A conformal group approach to the Dirac-Kahler system on the lattice

被引:5
|
作者
Rodrigues Faustino, Nelson Jose [1 ]
机构
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210580 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Cayley transform; Clifford algebras; conformal group; discrete Dirac operators; CLIFFORD ANALYSIS; DISCRETE; POLYNOMIALS; OPERATORS; EQUATION;
D O I
10.1002/mma.4291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the representation of the (n-1)+n-dimensional Lorentz pseudo-sphere on the projective space PRn,n, we propose a method to derive a class of solutions underlying to a Dirac-Kahler type equation on the lattice. We make use of the Cayley transform phi(w) to show that the resulting group representation arises from the same mathematical framework as the conformal group representation in terms of the general linear groupGL(n-1,n-1){0}. That allows us to describe such class of solutions as a commutative n-ary product, involving the quasi-monomials phi with membership in the paravector space R circle plus Rejen+j. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4118 / 4127
页数:10
相关论文
共 50 条