A Machine Learning Approach for the Non-Destructive Estimation of Leaf Area in Medicinal Orchid Dendrobium nobile L.

被引:4
|
作者
Das, Madhurima [1 ,2 ]
Deb, Chandan Kumar [3 ]
Pal, Ram [1 ]
Marwaha, Sudeep [3 ]
机构
[1] ICAR Natl Res Ctr Orchids, Pakyong 737106, East Sikkim, India
[2] ICAR Indian Agr Res Inst, New Delhi 110012, India
[3] ICAR Indian Agr Stat Res Inst, New Delhi 110012, India
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
关键词
leaf area; smartphone; ImageJ; Dendrobium nobile; gradient boosting regression (GBR); average rank (AR); GRADIENT BOOSTING REGRESSION; ACCURATE ALLOMETRIC MODEL; ARTIFICIAL NEURAL-NETWORK; PREDICTION; CARBON; CLIMATE; CULTIVARS; RADIATION; WEIGHT; LEAVES;
D O I
10.3390/app12094770
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, leaf area prediction models of Dendrobium nobile, were developed through machine learning (ML) techniques including multiple linear regression (MLR), support vector regression (SVR), gradient boosting regression (GBR), and artificial neural networks (ANNs). The best model was tested using the coefficient of determination (R-2), mean absolute errors (MAEs), and root mean square errors (RMSEs) and statistically confirmed through average rank (AR). Leaf images were captured through a smartphone and ImageJ was used to calculate the length (L), width (W), and leaf area (LA). Three orders of L, W, and their combinations were taken for model building. Multicollinearity status was checked using Variance Inflation Factor (VIF) and Tolerance (T). A total of 80% of the dataset and the remaining 20% were used for training and validation, respectively. KFold (K = 10) cross-validation checked the model overfit. GBR (R-2, MAE and RMSE values ranged at 0.96, (0.82-0.91) and (1.10-1.11) cm(2)) in the testing phase was the best among the ML models. AR statistically confirms the outperformance of GBR, securing first rank and a frequency of 80% among the top ten ML models. Thus, GBR is the best model imparting its future utilization to estimate leaf area in D. nobile.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Non-destructive leaf area estimation of flax (Linun usitatissimum L.)
    Kurt, O
    Uysal, H
    Uzun, S
    PAKISTAN JOURNAL OF BOTANY, 2005, 37 (04) : 837 - 841
  • [2] Non-destructive estimation of the leaf area in Nuphar lutea L. (Nymphaeaceae)
    Chernova, Aleksandra M.
    MODERN PHYTOMORPHOLOGY, 2019, 13 : 20 - 25
  • [3] Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.)
    Suarez Salazar, Juan Carlos
    Marina Melgarejo, Luz
    Duran Bautista, Ervin Humprey
    Di Rienzo, Julio A.
    Casanoves, Fernando
    SCIENTIA HORTICULTURAE, 2018, 229 : 19 - 24
  • [4] Non-destructive leaf area estimation model for faba bean (Vicia faba L.)
    Peksen, Erkut
    SCIENTIA HORTICULTURAE, 2007, 113 (04) : 322 - 328
  • [5] Non-destructive leaf area estimation in peach
    Demirsoy, H
    Demirsoy, L
    Uzun, S
    Ersoy, B
    EUROPEAN JOURNAL OF HORTICULTURAL SCIENCE, 2004, 69 (04) : 144 - 146
  • [6] Non-destructive leaf area estimation in chestnut
    Serdar, Ü
    Demirsoy, H
    SCIENTIA HORTICULTURAE, 2006, 108 (02) : 227 - 230
  • [7] Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L.
    De Swart, EAM
    Groenwold, R
    Kanne, HJ
    Stam, P
    Marcelis, LFM
    Voorrips, RE
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2004, 79 (05): : 764 - 770
  • [8] Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models
    Estefany Huaccha-Castillo, Annick
    Hitler Fernandez-Zarate, Franklin
    Jhoseph Perez-Delgado, Luis
    Saith Tantalean-Osores, Karla
    Primitivo Vaca-Marquina, Segundo
    Sanchez-Santillan, Tito
    Morales-Rojas, Eli
    Seminario-Cunya, Alejandro
    Quinones-Huatangari, Lenin
    FOREST SCIENCE AND TECHNOLOGY, 2023, 19 (01) : 59 - 67
  • [9] Non-destructive leaf area measurement in maize (Zea mays L.)
    Sezer, Ismail
    Oner, Fatih
    Mut, Zeki
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2009, 30 (05): : 785 - 790
  • [10] Non-destructive leaf area estimation in peach tree
    Sachet, Marcos Robson
    Penso, Gener Augusto
    Pertille, Rafael Henrique
    Guerrezi, Marieli Teresinha
    Citadin, Idemir
    CIENCIA RURAL, 2015, 45 (12): : 2161 - 2163