Goodness-of-fit test for randomly censored data based on maximum correlation

被引:6
|
作者
Strzalkowska-Kominiak, Ewa [1 ]
Grane, Aurea [2 ]
机构
[1] Cracow Univ Technol, Math Inst, Warszawska 24, PL-31155 Krakow, Poland
[2] Univ Carlos III Madrid, Stat Dept, C Madrid 126, E-28903 Getafe, Spain
关键词
Goodness-of-fit; Kaplan-Meier estimator; maximum correlation; random censoring; KAPLAN-MEIER ESTIMATOR; ASYMPTOTIC PROPERTIES;
D O I
10.2436/20.8080.02.54
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we study a goodness-of-fit test based on the maximum correlation coefficient, in the context of randomly censored data. We construct a new test statistic under general right censoring and prove its asymptotic properties. Additionally, we study a special case, when the censoring mechanism follows the well-known Koziol-Green model. We present an extensive simulation study on the empirical power of these two versions of the test statistic, showing their advantages over the widely used Pearson-type test. Finally, we apply our test to the head-and-neck cancer data.
引用
收藏
页码:119 / 138
页数:20
相关论文
共 50 条