Forensic analytical approach for hydrocarbon fingerprinting in soil vapor samplings: Example of a residential neighborhood in Brazil

被引:2
|
作者
Rocha Gouvea Junior, Jose Carlos [1 ]
Bertolo, Reginaldo Antonio [2 ]
Emsbo-Mattingly, Stephen D. [3 ]
Moura, Tiago Rodrigues [4 ]
Silva, Fernando Simao e [4 ]
机构
[1] Companhia Siderurg Nacl, Environm, Rodovia BR 393,Km 5001 S-N, BR-04538132 Vila Santa Cecilia, SP, Brazil
[2] Univ Sao Paulo, Inst Geociencias, Sao Paulo, Brazil
[3] Environm Forens Practice LLC, NewFields, Rockland, MA USA
[4] NewFields Brasil, Rio De Janeiro, Brazil
关键词
Soil gas; vapor intrusion; hydrocarbon chemical fingerprinting; environmental forensic; VOCs; PIANO; HEATING-OIL RELEASES;
D O I
10.1080/15275922.2021.1892874
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conventional analytical methods determine the concentration of compounds used to estimate the presence of environmental contamination capable of posing risk to human and ecological receptors. While these target analytes help regulators and environmental professional identify and manage potentially harmful conditions, these compounds can be generated by many natural and anthropogenic (man-made) sources and conventional methods alone fail to compositionally differentiate subsurface sources of contamination in complex environments. This case study demonstrates the advantage of using both conventional and forensic testing methods to accurately identify the source(s) of volatile hydrocarbon contamination in soil vapor samples for the development of an accurate conceptual site model in a neighbourhood near industrial facilities in Rio de Janeiro State, Brazil. The goal of this study was to differentiate potential impacts from a local steelmaking plant from fugitive hydrocarbons associated with more generic human activity in urban settings. This case study demonstrated the advantage of constructing chemical fingerprints from conventional volatile organic compound (VOC) method TO 15 and a forensic volatile hydrocarbon method using an enhanced version of method TO 15 (PIANO). The chemical fingerprints of vapor samples collected from subsurface soil gas and sewers were analysed and compared to laboratory reference samples. These data determined that the VOCs detected in neighbourhood soil vapor samples were associated with fugitive petroleum products migrating in the sewer pipelines and not with the steelmaking wastes emplaced near the residential area. This article discusses the forensic data and chemical signatures that support these findings, and the use of environmental forensic techniques to evaluate environmental data associated with complex scenarios, involving multiple contamination sources.
引用
收藏
页码:93 / 113
页数:21
相关论文
共 1 条
  • [1] Approximate analytical model for transient transport and oxygen-limited biodegradation of vapor-phase petroleum hydrocarbon compound in soil
    Zhu, Zhang-Wen
    Feng, Shi-Jin
    Chen, Hong-Xin
    Chen, Zhang-Long
    Ding, Xiang-Hong
    Peng, Chun-Hui
    CHEMOSPHERE, 2022, 300