A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/-MoO3 hybrid heterostructured nanoflowers

被引:88
|
作者
Manikandan, Arumugam [1 ]
Ilango, P. Robert [1 ]
Chen, Chia-Wei [1 ]
Wang, Yi-Chung [1 ]
Shih, Yu-Chuan [1 ]
Lee, Ling [1 ,3 ]
Wang, Zhiming M. [3 ]
Ko, Hyunhyub [5 ]
Chueh, Yu-Lun [1 ,2 ,4 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[2] Natl Sun Yet Sun Univ, Dept Phys, Kaohsiung 80424, Taiwan
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Sichuan, Peoples R China
[4] Natl Tsing Hua Univ, Frontier Res Ctr Fundamental & Appl Sci Matters, Hsinchu 30013, Taiwan
[5] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
MOS2 ULTRATHIN NANOSHEETS; VISIBLE-LIGHT; LAYER MOS2; EFFICIENT; NANOMATERIALS; PERFORMANCE; ADSORPTION; GRAPHENE; WATER; 1T;
D O I
10.1039/c8ta02496k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we demonstrate the successful synthesis of (1T/2H) MoS2/-MoO3 heterostructured nanoflowers at a low temperature of 200 degrees C by a one-step hydrothermal method. By tuning the reaction time under the influence of thiourea and hydrazine hydrate, we established a complete phase-engineered MoS2 with 1T and 2H phases on the surface of -MoO3. Active sites associated with the phase-engineered (1T/2H) MoS2/-MoO3 hybrid nanoflowers enable them to exhibit dual roles as a superior dye adsorbent and an electrocatalyst towards the hydrogen evolution reaction. The 2H-rich (1T/2H) MoS2/-MoO3 hybrid heterostructured nanoflowers prepared at 16 h achieved a high surface area of 37.97 m(2) g(-1), and 97% of the RhB dye with an initial concentration of 47.9 mg L-1 was removed within 10 min through the adsorption process, which is the highest known removal efficiency reported in the literature. As a hydrogen evolution reaction (HER) electrocatalyst in acidic solution, the 1T-rich (1T/2H) MoS2/-MoO3 hybrid heterostructured nanoflowers prepared at 12 h exhibited a highly efficient catalytic activity by achieving a low overpotential of 232 mV at a current density of 10 mA cm(-2), which is comparable to those of previously reported HER catalysts based on MoS2. Moreover, this sample reached a low Tafel slope of 81 mV dec(-1) and was stable when operated for more than 1000 cycles.
引用
收藏
页码:15320 / 15329
页数:10
相关论文
共 50 条
  • [1] MoS2/rGO electrocatalyst with MoO3 and 1T/2H-MoS2 species as active sites for efficient hydrogen evolution reaction
    Zhang, Zihan
    Wei, Liguo
    Zhao, Lishuang
    Zhang, Yu
    Bai, Haihong
    MATERIALS LETTERS, 2025, 391
  • [2] Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution
    Wang, Dezhi
    Zhang, Xiangyong
    Bao, Siyuan
    Zhang, Zhongting
    Fei, Hao
    Wu, Zhuangzhi
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (06) : 2681 - 2688
  • [3] Engineering MoS2 nanostructures from various MoO3 precursors towards hydrogen evolution reaction
    Wang, Wenpin
    Yao, Qing
    Ma, Jiaojiao
    Xu, Yue
    Jiang, Jiaqin
    Liu, Xien
    Li, Zhongcheng
    CRYSTENGCOMM, 2020, 22 (12): : 2258 - 2267
  • [4] 1T/2H MoS2/MoO3 hybrid assembles with glycine as highly efficient and stable electrocatalyst for water splitting
    Naujokaitis, Arnas
    Gaigalas, Paulius
    Bittencourt, Carla
    Mickevicius, Sigitas
    Jagminas, Arunas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (44) : 24237 - 24245
  • [5] Superior Hydrogen Evolution Reaction Performance in 2H-MoS2 to that of 1T Phase
    Zhang, Wencui
    Liao, Xiaobin
    Pan, Xuelei
    Yan, Mengyu
    Li, Yanxi
    Tian, Xiaocong
    Zhao, Yan
    Xu, Lin
    Mai, Liqiang
    SMALL, 2019, 15 (31)
  • [6] Fe doped 1T/2H MoS2/reduced graphene oxide for hydrogen evolution reaction
    Yao, Pengju
    Gao, Xuemin
    Xie, Fei
    Lv, Guicai
    Yang, Hui
    Snyders, Rony
    Bittencourt, Carla
    Li, Wenjiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1014
  • [7] Phase-Engineering of 1T/2H Molybdenum Disulfide by Using Ionic Liquid for Enhanced Electrocatalytic Hydrogen Evolution
    Zhang, Xin
    Li, He
    Yang, Hui
    Xie, Fei
    Yuan, Zhihao
    Zajickova, Lenka
    Li, Wenjiang
    CHEMELECTROCHEM, 2020, 7 (15): : 3347 - 3352
  • [8] A comparative study on the electrochemical capacitor performance of 1T/2H hybridized phase and 2H pure phase of MoS2 nanoflowers
    Murugesan, Ramesh Aravind
    Raja, Krishna Chandar Nagamuthu
    NANOTECHNOLOGY, 2022, 33 (03)
  • [9] Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution
    Wang, Dezhi
    Su, Boyu
    Jiang, Yan
    Li, Lu
    Ng, Boon K.
    Wu, Zhuangzhi
    Liu, Fangyang
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 102 - 108
  • [10] 1T-MoS2 Enriched Hierarchical MoS2/MoO3 Produced by Phase Transformation for Efficient Hydrogen Evolution Reaction
    Zhang, Xiao
    Lu, Yi
    Liu, Yi-Xuan
    Tian, Ge
    Yang, Xiao-Yu
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (05)