Pangr: A Behavior-based Automatic Vulnerability Detection and Exploitation Framework

被引:6
|
作者
Liu, Danjun [1 ]
Wang, Jingyuan [1 ]
Rong, Zelin [1 ]
Mi, Xianya [1 ]
Gai, Fangyu [1 ]
Yong, Tang [1 ]
Wang, Baosheng [1 ]
机构
[1] Natl Univ Def & Technol, Coll Comp, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
automatic detection; automatic exploit generation; software security; automatic patching;
D O I
10.1109/TrustCom/BigDataSE.2018.00103
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, with the size and complexity of software increasing rapidly, vulnerabilities are becoming diversified and hard to identify. It is unpractical to detect and exploit vulnerabilities by manual construction. Therefore, an efficient automatic method of detecting and exploiting software vulnerability is in critical demand. This paper implements Pangr, an entire system for automatic vulnerability detection, exploitation, and patching. Pangr builds a complete vulnerability model based on its triggering behavior to identify vulnerabilities and generate exp or exploit schemes. According to the type and feature of the vulnerability, Pangr can generate the specific patch for the software. In the experiment, we tested 20 vulnerable programs on 32-bit Linux machine. Pangr detected 16 vulnerabilities, generated 10 exp, and patched 14 programs.
引用
收藏
页码:705 / 712
页数:8
相关论文
共 50 条
  • [1] Automatic Functionality Detection in Behavior-Based IDS
    Nykodym, Tomas
    Skormin, Victor
    Dolgikh, Andrey
    Antonakos, James.
    2011 - MILCOM 2011 MILITARY COMMUNICATIONS CONFERENCE, 2011, : 1302 - 1307
  • [2] Shikra: A behavior-based Android malware detection framework
    Ma Zhao-hui
    Chen Zi-hao
    Wang Xin-ming
    Nic Rui-hua
    Zhao Gan-sen
    Wu Jie-chao
    Ren Xue-qi
    2017 INTERNATIONAL CONFERENCE ON GREEN INFORMATICS (ICGI), 2017, : 175 - 184
  • [3] A framework for behavior-based detection of user substitution in a mobile context
    Mazhelis, Oleksiy
    Puuronen, Seppo
    COMPUTERS & SECURITY, 2007, 26 (02) : 154 - 176
  • [4] Behavior-based spyware detection
    Kirda, Engin
    Kruegel, Christopher
    USENIX Association Proceedings of the 15th USENIX Security Symposium, 2006, : 273 - 288
  • [5] Lightweight Behavior-Based Malware Detection
    Anisetti, Marco
    Ardagna, Claudio A.
    Bena, Nicola
    Giandomenico, Vincenzo
    Gianini, Gabriele
    MANAGEMENT OF DIGITAL ECOSYSTEMS, MEDES 2023, 2024, 2022 : 237 - 250
  • [6] Behavior-based malware analysis and detection
    Liu, Wu
    Ren, Ping
    Liu, Ke
    Duan, Hai-Xin
    Proceedings - 2011 1st International Workshop on Complexity and Data Mining, IWCDM 2011, 2011, : 39 - 42
  • [7] A BEHAVIOR-BASED APPROACH FOR MALWARE DETECTION
    Mosli, Rayan
    Li, Rui
    Yuan, Bo
    Pan, Yin
    ADVANCES IN DIGITAL FORENSICS XIII, 2017, 511 : 187 - 201
  • [8] A unifying framework for behavior-based trust models
    von der Weth, Christian
    Boehm, Klemens
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2006: COOPIS, DOA, GADA, AND ODBAS, PT 1, PROCEEDINGS, 2006, 4275 : 444 - 461
  • [9] On the Effectiveness of Behavior-Based Ransomware Detection
    Han, Jaehyun
    Lin, Zhiqiang
    Porter, Donald E.
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS (SECURECOMM 2020), PT II, 2020, 336 : 120 - 140
  • [10] A Framework for Behavior-Based Malware Analysis in the Cloud
    Martignoni, Lorenzo
    Paleari, Roberto
    Bruschi, Danilo
    INFORMATION SYSTEMS SECURITY, PROCEEDINGS, 2009, 5905 : 178 - +