Artifact Compatibility for Enabling Collaboration in the Artificial Intelligence Ecosystem

被引:2
|
作者
Maksimov, Yuliyan, V [1 ,3 ]
Fricker, Samuel A. [1 ,2 ]
Tutschku, Kurt [3 ]
机构
[1] FHNW Univ Appl Sci & Arts Northwestern Switzerlan, Inst Interact Technol, Windisch, Switzerland
[2] Blekinge Inst Technol, Software Engn Res Lab SERL Sweden, Karlskrona, Sweden
[3] Blekinge Inst Technol, Dept Comp Sci & Engn DIDD, Karlskrona, Sweden
来源
关键词
Compatibility; Licensing; Marketplace; Artificial intelligence; Machine learning; Deep learning;
D O I
10.1007/978-3-030-04840-2_5
中图分类号
F [经济];
学科分类号
02 ;
摘要
Different types of software components and data have to be combined to solve an artificial intelligence challenge. An emerging marketplace for these components will allow for their exchange and distribution. To facilitate and boost the collaboration on the marketplace a solution for finding compatible artifacts is needed. We propose a concept to define compatibility on such a marketplace and suggest appropriate scenarios on how users can interact with it to support the different types of required compatibility. We also propose an initial architecture that derives from and implements the compatibility principles and makes the scenarios feasible. We matured our concept in focus group workshops and interviews with potential marketplace users from industry and academia. The results demonstrate the applicability of the concept in a real-world scenario.
引用
收藏
页码:56 / 71
页数:16
相关论文
共 50 条
  • [1] The future of ecosystem assessments is automation, collaboration, and artificial intelligence
    Garcia, Carmen Galaz
    Bagstad, Kenneth J.
    Brun, Julien
    Chaplin-Kramer, Rebecca
    Dhu, Trevor
    Murray, Nicholas J.
    Nolan, Connor J.
    Ricketts, Taylor H.
    Sosik, Heidi M.
    Sousa, Daniel
    Willard, Geoff
    Halpern, Benjamin S.
    ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (01)
  • [2] Augmented reality in smart manufacturing: Enabling collaboration between humans and artificial intelligence
    Chu, Chih-Hsing
    Wang, Lihui
    Liu, Shengjun
    Zhang, Yunbo
    Menozzi, Marino
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 61 : 658 - 659
  • [3] Artificial Intelligence Enabling Radiology Reporting
    Bizzo, Bernardo C.
    Almeida, Renata R.
    Alkasab, Tarik K.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (06) : 1045 - 1052
  • [4] Artificial Intelligence & Creativity: A Manifesto for Collaboration
    Vinchon, Florent
    Lubart, Todd
    Bartolotta, Sabrina
    Gironnay, Valentin
    Botella, Marion
    Bourgeois-Bougrine, Samira
    Burkhardt, Jean-Marie
    Bonnardel, Nathalie
    Corazza, Giovanni Emanuele
    Glaveanu, Vlad
    Hanchett Hanson, Michael
    Ivcevic, Zorana
    Karwowski, Maciej
    Kaufman, James C.
    Okada, Takeshi
    Reiter-Palmon, Roni
    Gaggioli, Andrea
    JOURNAL OF CREATIVE BEHAVIOR, 2023, 57 (04): : 472 - 484
  • [5] Artificial Intelligence and Radiology: Collaboration Is Key
    Yi, Paul H.
    Hui, Ferdinand K.
    Ting, Daniel S. W.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (05) : 781 - 783
  • [6] Institutional Collaboration and Competition in Artificial Intelligence
    Shao, Zhou
    Yuan, Sha
    Wang, Yongli
    IEEE ACCESS, 2020, 8 (69734-69741) : 69734 - 69741
  • [7] Artificial Intelligence to Reshape the Healthcare Ecosystem
    Reali, Gianluca
    Femminella, Mauro
    FUTURE INTERNET, 2024, 16 (09)
  • [8] The Evolutionary Dynamics of the Artificial Intelligence Ecosystem
    Jacobides, Michael G.
    Brusoni, Stefano
    Candelon, Francois
    STRATEGY SCIENCE, 2021, 6 (04) : 412 - 435
  • [9] Understanding the artificial intelligence business ecosystem
    Quan X.I.
    Sanderson J.
    IEEE Engineering Management Review, 2018, 46 (04): : 22 - 25
  • [10] Ecosystem Models Based on Artificial Intelligence
    Strannegard, Claes
    Engsner, Niklas
    Eisfeldt, Jesper
    Endler, John
    Hansson, Amanda
    Lindgren, Rasmus
    Mostad, Petter
    Olsson, Simon
    Perini, Irene
    Reese, Heather
    Taylan, Fulya
    Ulfsbacker, Simon
    Nordgren, Ann
    2022 34TH WORKSHOP OF THE SWEDISH ARTIFICIAL INTELLIGENCE SOCIETY (SAIS 2022), 2022, : 37 - 45