The linear pencil approach to rational interpolation
被引:10
|
作者:
Beckermann, Bernhard
论文数: 0引用数: 0
h-index: 0
机构:
UST Lille, Lab Painleve UMR ANO EDP 8524, UFR Math M3, F-59655 Villeneuve Dascq, FranceUST Lille, Lab Painleve UMR ANO EDP 8524, UFR Math M3, F-59655 Villeneuve Dascq, France
Beckermann, Bernhard
[1
]
Derevyagin, Maxim
论文数: 0引用数: 0
h-index: 0
机构:
UST Lille, Lab Painleve UMR ANO EDP 8524, UFR Math M3, F-59655 Villeneuve Dascq, France
Inst Appl Math & Mech, Dept Nonlinear Anal, UA-83114 Donetsk, UkraineUST Lille, Lab Painleve UMR ANO EDP 8524, UFR Math M3, F-59655 Villeneuve Dascq, France
Derevyagin, Maxim
[1
,2
]
Zhedanov, Alexei
论文数: 0引用数: 0
h-index: 0
机构:
Inst Phys & Engn, UA-83114 Donetsk, UkraineUST Lille, Lab Painleve UMR ANO EDP 8524, UFR Math M3, F-59655 Villeneuve Dascq, France
Zhedanov, Alexei
[3
]
机构:
[1] UST Lille, Lab Painleve UMR ANO EDP 8524, UFR Math M3, F-59655 Villeneuve Dascq, France
Multipoint Pade approximation;
Rational interpolation;
MP continued fractions;
Jacobi matrix;
Linear pencils;
RESOLVENT SET;
DIFFERENCE;
THEOREM;
D O I:
10.1016/j.jat.2010.02.004
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
It is possible to generalize the fruitful interaction between (real or complex) Jacobi matrices, orthogonal polynomials and Pade approximants at infinity by considering rational interpolants, (bi)orthogonal rational functions and linear pencils zB - A of two tridiagonal matrices A. B, following Spiridonov and Zhedanov. In the present paper, as well as revisiting the underlying generalized Favard theorem, we suggest a new criterion for the resolvent set of this linear pencil in terms of the underlying associated rational functions. This enables us to generalize several convergence results for Pade approximants in terms of complex Jacobi matrices to the more general case of convergence of rational interpolants in terms of the linear pencil. We also study generalizations of the Darboux transformations and the link to biorthogonal rational functions. Finally, for a Markov function and for pairwise conjugate interpolation points tending to infinity, we compute the spectrum and the numerical range of the underlying linear pencil explicitly. (C) 2010 Elsevier Inc. All rights reserved.