Interactive Process Drift Detection Framework

被引:2
|
作者
Vecino Sato, Denise Maria [1 ,2 ]
Barddal, Jean Paul [1 ]
Scalabrin, Edson Emilio [1 ]
机构
[1] Pontifical Catholic Univ Parana PUCPR, Imac Conceicao 1155, BR-80215901 Curitiba, Parana, Brazil
[2] Fed Inst Parana IFPR, Joao Negrao 1285, BR-80230150 Curitiba, Parana, Brazil
关键词
Process drift; Concept drift; Drift detection; Evolving environment;
D O I
10.1007/978-3-030-87897-9_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel tool for detecting drifts in process models. The tool targets the challenge of defining the better parameter configuration for detecting drifts by providing an interactive user interface. Using this interface, the user can quickly change the parameters and verify how the process evolved. The process evolution is presented in a timeline of process models, simulating a "replay" of models over time. One instantiation of the framework was implemented using a fixed-size sliding window, discovering process maps using directly-follows graphs (DFGs), and calculating nodes and edges similarities. This instantiation was evaluated using a benchmarking dataset of simple and complex drift patterns. The tool correctly detected 17 from the 18 change patterns, thus confirming its potential when an adequate window size is set. The user interface shows that replaying the process models provides a visual understanding of the changing process. The concept drift is explained by the similarity metrics' differences, thus allowing drift localization.
引用
收藏
页码:192 / 204
页数:13
相关论文
共 50 条
  • [1] Interactive Process Drift Detection: A Framework for Visual Analysis of Process Drifts
    Sato, Denise Maria Vecino
    Fontana, Rafaela Mantovani
    Barddal, Jean Paul
    Scalabrin, Edson Emilio
    CEUR Workshop Proceedings, 2021, 3098 : 41 - 42
  • [2] A Framework for Explainable Concept Drift Detection in Process Mining
    Adams, Jan Niklas
    van Zelst, Sebastiaan J.
    Quack, Lara
    Hausmann, Kathrin
    van der Aalst, Wil M. P.
    Rose, Thomas
    BUSINESS PROCESS MANAGEMENT (BPM 2021), 2021, 12875 : 400 - 416
  • [3] A Framework for Online Process Concept Drift Detection from Event Streams
    Liu, Na
    Huang, Jiwei
    Cui, Lizhen
    2018 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (IEEE SCC 2018), 2018, : 105 - 112
  • [4] A Framework for Interactive Multidimensional Process Mining
    Vogelgesang, Thomas
    Rinderle-Ma, Stefanie
    Appelrath, H-Juergen
    BUSINESS PROCESS MANAGEMENT WORKSHOPS, BPM 2016, 2017, 281 : 23 - 35
  • [5] Time drift detection in process mining
    Che, Haiying
    Machu, Quentin
    Zhou, Yangguang
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2016, : 99 - 107
  • [6] SEQUENTIAL DETECTION OF A DRIFT CHANGE IN A WIENER PROCESS
    BAGSHAW, M
    JOHNSON, RA
    COMMUNICATIONS IN STATISTICS, 1975, 4 (08): : 787 - 796
  • [7] Fast and Accurate Business Process Drift Detection
    Maaradji, Abderrahmane
    Dumas, Marlon
    La Rosa, Marcello
    Ostovar, Alireza
    BUSINESS PROCESS MANAGEMENT, BPM 2015, 2015, 9253 : 406 - 422
  • [8] An Experimental Evaluation of Process Concept Drift Detection
    Adams, Jan Niklas
    Pitsch, Cameron
    Brockhoff, Tobias
    van der Aalst, Wil M. P.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (08): : 1856 - 1869
  • [9] Comprehensive Process Drift Detection with Visual Analytics
    Yeshchenko, Anton
    Di Ciccio, Claudio
    Mendling, Jan
    Polyvyanyy, Artem
    CONCEPTUAL MODELING, ER 2019, 2019, 11788 : 119 - 135
  • [10] An Interactive Framework to Develop and Align Business Process Models
    Ahmad, Dorob Wali
    Haque, Waciar
    2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,