Improved Algorithm for Maximum Independent Set on Unit Disk Graph

被引:3
|
作者
Jallu, Ramesh K. [1 ]
Das, Guatam K. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati, India
关键词
Maximum independent set; Unit disk graph; Approximation algorithm; TIME APPROXIMATION SCHEMES; PACKING;
D O I
10.1007/978-3-319-29221-2_18
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present a 2-factor approximation algorithm for the maximum independent set problem on a unit disk graph, where the geometric representation of the graph has been given. We use dynamic programming and farthest point Voronoi diagram concept to achieve the desired approximation factor. Our algorithm runs in O(n(2) log n) time and O(n(2)) space, where n is the input size. We also propose a polynomial time approximation scheme (PTAS) for the same problem. Given a positive integer k, it can produce a solution of size 1/(1+ 1/k)(2) vertical bar OPT vertical bar in n O(k) time, where vertical bar OPT vertical bar is the optimum size of the solution. The best known algorithm available in the literature runs in (i) O(n(3)) time and O(n(2)) space for 2-factor approximation, and (ii) n(O(k log k)) time for PTAS [Das, G. K., De, M., Kolay, S., Nandy, S. C., Sur-Kolay, S.: Approximation algorithms for maximum independent set of a unit disk graph. Information Processing Letters 115(3), 439-446 (2015)].
引用
收藏
页码:212 / 223
页数:12
相关论文
共 50 条
  • [1] Approximation algorithms for maximum independent set of a unit disk graph
    Das, Gautam K.
    De, Minati
    Kolay, Sudeshna
    Nandy, Subhas C.
    Sur-Kolay, Susmita
    INFORMATION PROCESSING LETTERS, 2015, 115 (03) : 439 - 446
  • [2] Faster approximation for maximum independent set on unit disk graph
    Nandy, Subhas C.
    Pandit, Supantha
    Roy, Sasanka
    INFORMATION PROCESSING LETTERS, 2017, 127 : 58 - 61
  • [3] AN ALGORITHM FOR FINDING A MAXIMUM WEIGHTED INDEPENDENT SET IN AN ARBITRARY GRAPH
    PARDALOS, PM
    DESAI, N
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 38 (3-4) : 163 - 175
  • [4] Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph
    Hong, Weizhi
    Zhang, Zhao
    Ran, Yingli
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 527 - 537
  • [5] The Maximum Distance-d Independent Set Problem on Unit Disk Graphs
    Jena, Sangram K.
    Jallu, Ramesh K.
    Das, Gautam K.
    Nandy, Subhas C.
    FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 68 - 80
  • [6] A new bound on maximum independent set and minimum connected dominating set in unit disk graphs
    Yingfan L. Du
    Hongmin W. Du
    Journal of Combinatorial Optimization, 2015, 30 : 1173 - 1179
  • [7] A new bound on maximum independent set and minimum connected dominating set in unit disk graphs
    Du, Yingfan L.
    Du, Hongmin W.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (04) : 1173 - 1179
  • [8] An Improved Simulated Annealing Algorithm for the Maximum Independent Set Problem
    Xu, Xinshun
    Ma, Jun
    Wang, Hua
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 822 - 831
  • [9] AN EFFICIENT ALGORITHM FOR FINDING A MAXIMUM WEIGHT INDEPENDENT SET OF A CIRCLE GRAPH
    GOLDSCHMIDT, O
    TAKVORIAN, A
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (10) : 1672 - 1674
  • [10] Chemical Reaction Optimization Algorithm to Find Maximum Independent Set in a Graph
    Asmaran, Mohammad A.
    Sharieh, Ahmad A.
    Mahafzah, Basel A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (09) : 76 - 91