Simplified representation of atmospheric aerosol size distributions using absolute principal component analysis

被引:13
|
作者
Chan, T. W.
Mozurkewich, M. [1 ]
机构
[1] York Univ, Dept Chem, Toronto, ON M3J 2R7, Canada
[2] York Univ, Ctr Atmospher Chem, Toronto, ON M3J 2R7, Canada
关键词
D O I
10.5194/acp-7-875-2007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Principal component analysis provides a fast and robust method to reduce the data dimensionality of an aerosol size distribution data set. Here we describe a methodology for applying principal component analysis to aerosol size distribution measurements. We illustrate the method by applying it to data obtained during five field studies. Most variations in the sub-micrometer aerosol size distribution over periods of weeks can be described using 5 components. Using 6 to 8 components preserves virtually all the information in the original data. A key aspect of our approach is the introduction of a new method to weight the data; this preserves the orthogonality of the components while taking the measurement uncertainties into account. We also describe a new method for identifying the approximate number of aerosol components needed to represent the measurement quantitatively. Applying Varimax rotation to the resultant components decomposes a distribution into independent monomodal distributions. Normalizing the components provides physical meaning to the component scores. The method is relatively simple, computationally fast, and numerically robust. The resulting data simplification provides an efficient method of representing complex data sets and should greatly assist in the analysis of size distribution data.
引用
收藏
页码:875 / 886
页数:12
相关论文
共 50 条
  • [1] Absolute principal component analysis of atmospheric aerosols in Mexico City
    Miranda, J
    Crespo, I
    Morales, MA
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2000, 7 (01) : 14 - 18
  • [2] Absolute principal component analysis of atmospheric aerosols in Mexico city
    Javier Miranda
    Ihali Crespo
    Maria Angeles Morales
    Environmental Science and Pollution Research, 2000, 7 : 14 - 18
  • [3] Elemental size distributions in the urban atmospheric aerosol
    Salma, I.
    Maenhaut, W.
    Weidinger, T.
    Záray, Gy.
    Zemplén-Papp, E.
    Journal of Aerosol Science, 2000, 31 (SUPPL. 1)
  • [4] MODES IN THE SIZE DISTRIBUTIONS OF ATMOSPHERIC INORGANIC AEROSOL
    JOHN, W
    WALL, SM
    ONDO, JL
    WINKLMAYR, W
    ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1990, 24 (09): : 2349 - 2359
  • [5] Empirical functions for atmospheric aerosol size distributions
    Ram, Michael
    Gayley, Robert I.
    Shaw, Glenn E.
    Journal of Aerosol Science, 1989, 20 (03): : 351 - 353
  • [6] SPATIAL VARIABILITIES IN ATMOSPHERIC AEROSOL SIZE DISTRIBUTIONS
    WELLMAN, DL
    CALDWELL, BR
    YOTKA, PR
    BARRETT, EW
    PUESCHEL, RF
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (12): : 1086 - 1087
  • [7] EMPIRICAL FUNCTIONS FOR ATMOSPHERIC AEROSOL SIZE DISTRIBUTIONS
    RAM, M
    GAYLEY, RI
    SHAW, GE
    JOURNAL OF AEROSOL SCIENCE, 1989, 20 (03) : 351 - 353
  • [8] Predicting Atmospheric Aerosol Size Distributions Using Mixture Density Networks
    Rudiger, Joshua J.
    deGrassie, John Stephen
    McBryde, Kevin
    Hammel, Stephen
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS IV, 2015, 9614
  • [9] Simplified nonlinear principal component analysis
    Lit, BW
    Hsieh, WW
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 759 - 763
  • [10] Image Denoising Using Sparse Representation and Principal Component Analysis
    Abedini, Maryam
    Haddad, Horriyeh
    Masouleh, Marzieh Faridi
    Shahbahrami, Asadollah
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2022, 22 (04)