Asymptotic limit of fast rotation for the incompressible Navier-Stokes equations in a 3D layer

被引:1
|
作者
Ohyama, Hiroki [1 ]
Takada, Ryo [1 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
关键词
The incompressible Navier– Stokes equations; The Coriolis force; An infinite layer; Fast rotation limit; LONG-TIME ASYMPTOTICS; GLOBAL SOLVABILITY; FUNCTION-SPACES; CORIOLIS-FORCE; WELL-POSEDNESS; HEAT-EQUATIONS; ILL-POSEDNESS; REGULARITY; BESOV; EULER;
D O I
10.1007/s00028-021-00697-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem for the Navier-Stokes equation with the Coriolis force in a three-dimensional infinite layer. We prove the unique existence of global solutions for initial data in the scaling-invariant space when the speed of rotation is sufficiently high. Furthermore, we consider the asymptotic limit of the fast rotation and show that the global solution converges to that of 2D incompressible Navier-Stokes equations in some global in time space-time norms.
引用
收藏
页码:2591 / 2629
页数:39
相关论文
共 50 条