Absorption;
Attenuation;
Receivers;
Visible light communication;
Scattering;
Signal detection;
Glass;
Beer-Lambert law;
dye-doped and polymer liquid crystals;
radiative transfer equation (RTE);
re -configurable intelligent surface (RIS);
terthiophene (3T-2 
MB);
trinitrofluorenone (TNF);
VLC transmission range expansion;
visible light communication (VLC);
D O I:
10.1109/JLT.2021.3059599
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Visible light communication (VLC) enables access to huge unlicensed bandwidth, a higher security level, and no radio frequency interference. With these advantages, VLC emerges as a complementary solution to radio frequency communications. VLC systems have primarily been designed for indoor scenarios with typical transmission distances between 2 and 5 m. Different designs would be required for larger distances. This article proposes for the first time, the use of a liquid crystal (LC)-based re-configurable intelligent surface (RIS) for improving the VLC signal detection and transmission range. An LC-based RIS presents multiple advantages, including the tunability of its photo-refractive parameters. Another advantage is its light amplification capabilities when under the influence of an externally applied field. In this article, we analyze an LC-based RIS structure to amplify the detected light and improve the VLC signal detection and transmission range. Results show that mixing LC with 4 to 8 wt% concentration of a dye such as the terthiophene (3T-2 MB) improves the VLC transmission range of about 0.20 to 1.08 m. This improvement can reach 6.56 m if we combine 8 wt% concentration of 3T-2 MB and 0.1 wt% concentration of trinitrofluorenone.