A Singularity Model for Chemical Reactivity

被引:9
|
作者
Menger, Fredric M. [1 ]
Karaman, Rafik [2 ]
机构
[1] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[2] Al Quds Univ, Fac Pharm, Jerusalem, Israel
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
catastrophe; chemical reactivity; reaction mechanisms; singularity; transition states; GROUND-STATE; ENZYME; CATALYSIS; SYSTEMS;
D O I
10.1002/chem.200902683
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article proposes a model for chemical reactivity that involves singularities ("catastrophes") in the timing of bond-making and bond-breaking events. The common stapler is a good mechanical analogy: As hand-pressure is increased on the machine, the staple hardly changes its configuration until the staple suddenly bends. This is viewed as a singularity or catastrophe, defined classically as an abrupt change resulting from a smooth increase or decrease in external conditions (pressure in the case of a stapler, distance in the case of reactivity). Although experimental observations are provided to support the singularity effect, the model remains a heterodox notion at the present time.
引用
收藏
页码:1420 / 1427
页数:8
相关论文
共 50 条
  • [1] The activation strain model of chemical reactivity
    van Zeist, Willem-Jan
    Bickelhaupt, F. Matthias
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2010, 8 (14) : 3118 - 3127
  • [2] REFORMULATION OF DELOCALIZATION MODEL - APPLICATION TO CHEMICAL REACTIVITY
    CHALVET, O
    CONSTANCIEL, R
    DECORET, C
    ROYER, J
    BULLETIN DES SOCIETES CHIMIQUES BELGES, 1977, 86 (1-2): : 31 - 34
  • [3] Understanding chemical reactivity using the activation strain model
    Pascal Vermeeren
    Stephanie C. C. van der Lubbe
    Célia Fonseca Guerra
    F. Matthias Bickelhaupt
    Trevor A. Hamlin
    Nature Protocols, 2020, 15 : 649 - 667
  • [4] How to select an optimal neural model of chemical reactivity?
    Szaleniec, Maciej
    Tadeusiewicz, Ryszard
    Witko, Malgorzata
    NEUROCOMPUTING, 2008, 72 (1-3) : 241 - 256
  • [5] THE DIABATIC SURFACE METHOD - A MODEL FOR CHEMICAL-REACTIVITY
    MCDOUALL, JJW
    ROBB, MA
    BERNARDI, F
    OLIVUCCI, M
    THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE, 1988, 44 (3-4): : 211 - 216
  • [6] Understanding chemical reactivity using the activation strain model
    Vermeeren, Pascal
    van der Lubbe, Stephanie C. C.
    Guerra, Celia Fonseca
    Bickelhaupt, F. Matthias
    Hamlin, Trevor A.
    NATURE PROTOCOLS, 2020, 15 (02) : 649 - 667
  • [7] Chemical reactivity
    Chattaraj, PK
    JOURNAL OF CHEMICAL SCIENCES, 2005, 117 (05) : 367 - 367
  • [8] Investigating the Chemical Reactivity of Lithium Silicate Model SEI Layers
    Coyle, Jaclyn E.
    Brumbach, Michael T.
    Veith, Gabriel M.
    Apblett, Christopher A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (15): : 8153 - 8161
  • [9] To model chemical reactivity in heterogeneous emulsions: Think homogeneous microemulsions
    Romsted, Laurence
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [10] To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions
    Bravo-Diaz, Carlos
    Romsted, Laurence Stuart
    Liu, Changyao
    Losada-Barreiro, Sonia
    Jose Pastoriza-Gallego, Maria
    Gao, Xiang
    Gu, Qing
    Krishnan, Gunaseelan
    Sanchez-Paz, Veronica
    Zhang, Yongliang
    Dar, Aijaz Ahmad
    LANGMUIR, 2015, 31 (33) : 8961 - 8979