Higher-order topology in bismuth

被引:665
|
作者
Schindler, Frank [1 ]
Wang, Zhijun [2 ]
Vergniory, Maia G. [3 ,4 ,5 ]
Cook, Ashley M. [1 ]
Murani, Anil [6 ]
Sengupta, Shamashis [7 ]
Kasumov, Alik Yu. [6 ,8 ]
Deblock, Richard [6 ]
Jeon, Sangjun [9 ,10 ]
Drozdov, Ilya [11 ]
Bouchiat, Helene [6 ]
Gueron, Sophie [6 ]
Yazdani, Ali [9 ,10 ]
Bernevig, B. Andrei [9 ,10 ]
Neupert, Titus [1 ]
机构
[1] Univ Zurich, Dept Phys, Zurich, Switzerland
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Donostia Int Phys Ctr, Donostia San Sebastian, Spain
[4] Univ Basque Country, UPV EHU, Fac Sci & Technol, Dept Appl Phys 2, Bilbao, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[6] Univ Paris Sud, CNRS, LPS, UMR 8502, Paris, France
[7] Univ Paris Sud, CSNSM, IN2P3, UMR 8609, Paris, France
[8] RAS, Inst Microelect Technol & High Pur Mat, Chernogolovka, Russia
[9] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[10] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[11] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY USA
基金
美国国家科学基金会; 瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
GENERALIZED GRADIENT APPROXIMATION; QUANTIZED HALL CONDUCTANCE; CRYSTALLINE INSULATOR; EXPERIMENTAL REALIZATION; PHASE-TRANSITION; EDGE STATES;
D O I
10.1038/s41567-018-0224-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The mathematical field of topology has become a framework in which to describe the low-energy electronic structure of crystalline solids. Typical of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principles calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunnelling spectroscopy, we probe the signatures of the rotational symmetry of the one-dimensional states located at the step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator.
引用
收藏
页码:918 / +
页数:8
相关论文
共 50 条
  • [1] Higher-order topology in bismuth
    Frank Schindler
    Zhijun Wang
    Maia G. Vergniory
    Ashley M. Cook
    Anil Murani
    Shamashis Sengupta
    Alik Yu. Kasumov
    Richard Deblock
    Sangjun Jeon
    Ilya Drozdov
    Hélène Bouchiat
    Sophie Guéron
    Ali Yazdani
    B. Andrei Bernevig
    Titus Neupert
    Nature Physics, 2018, 14 : 918 - 924
  • [2] Author Correction: Higher-order topology in bismuth
    Frank Schindler
    Zhijun Wang
    Maia G. Vergniory
    Ashley M. Cook
    Anil Murani
    Shamashis Sengupta
    Alik Yu. Kasumov
    Richard Deblock
    Sangjun Jeon
    Ilya Drozdov
    Hélène Bouchiat
    Sophie Guéron
    Ali Yazdani
    B. Andrei Bernevig
    Titus Neupert
    Nature Physics, 2018, 14 (10) : 1067 - 1067
  • [3] Author Correction: Higher-order topology in bismuth
    Frank Schindler
    Zhijun Wang
    Maia G. Vergniory
    Ashley M. Cook
    Anil Murani
    Shamashis Sengupta
    Alik Yu. Kasumov
    Richard Deblock
    Sangjun Jeon
    Ilya Drozdov
    Hélène Bouchiat
    Sophie Guéron
    Ali Yazdani
    B. Andrei Bernevig
    Titus Neupert
    Nature Physics, 2020, 16 (6) : 702 - 702
  • [4] Higher-order topology in bismuth (vol 14, pg 918, 2018)
    Schindler, Frank
    Wang, Zhijun
    Vergniory, Maia G.
    Cook, Ashley M.
    Murani, Anil
    Sengupta, Shamashis
    Kasumov, Alik Yu.
    Deblock, Richard
    Jeon, Sangjun
    Drozdov, Ilya
    Bouchiat, Helene
    Gueron, Sophie
    Yazdani, Ali
    Bernevig, B. Andrei
    Neupert, Titus
    NATURE PHYSICS, 2018, 14 (10) : 1067 - 1067
  • [5] Higher-order topology in bismuth (vol 13, pg 151, 2020)
    Schindler, Frank
    Wang, Zhijun
    Vergniory, Maia G.
    Cook, Ashley M.
    Murani, Anil
    Sengupta, Shamashis
    Kasumov, Alik Yu.
    Deblock, Richard
    Jeon, Sangjun
    Drozdov, Ilya
    Bouchiat, Helene
    Gueron, Sophie
    Yazdani, Ali
    Bernevig, B. Andrei
    Neupert, Titus
    NATURE PHYSICS, 2020, 16 (06) : 702 - 702
  • [6] Higher-order band topology
    Biye Xie
    Hai-Xiao Wang
    Xiujuan Zhang
    Peng Zhan
    Jian-Hua Jiang
    Minghui Lu
    Yanfeng Chen
    Nature Reviews Physics, 2021, 3 : 520 - 532
  • [7] Higher-order band topology
    Xie, Biye
    Wang, Hai-Xiao
    Zhang, Xiujuan
    Zhan, Peng
    Jiang, Jian-Hua
    Lu, Minghui
    Chen, Yanfeng
    NATURE REVIEWS PHYSICS, 2021, 3 (07) : 520 - 532
  • [8] Higher-order topology in Fibonacci quasicrystals
    Ouyang, Chaozhi
    He, Qinghua
    Xu, Dong-Hui
    Liu, Feng
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [9] Higher-order topology for collective motions
    Sun, Zijie
    Hu, Tianjiang
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [10] Superconductors with anomalous Floquet higher-order topology
    Vu, DinhDuy
    Zhang, Rui-Xing
    Yang, Zhi-Cheng
    Das Sarma, S.
    PHYSICAL REVIEW B, 2021, 104 (14)