Kernel combination versus classifier combination

被引:0
|
作者
Lee, Wan-Jui [1 ]
Verzakov, Sergey [2 ]
Duin, Robert P. W. [2 ]
机构
[1] Natl Sun Yat Sen Univ, EE Dept, Kaohsiung 80424, Taiwan
[2] Delft Univ Technol, Informat & Commun Theory Grp, NL-2600 AA Delft, Netherlands
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Combining classifiers is to join the strengths of different classifiers to improve the classification performance. Using rules to combine the outputs of different classifiers is the basic structure of classifier combination. Fusing models from different kernel machine classifiers is another strategy for combining models called kernel combination. Although classifier combination and kernel combination are very different strategies for combining classifier, they aim to reach the same goal by very similar fundamental concepts. We propose here a compositional method for kernel combination. The new composed kernel matrix is an extension and union of the original kernel matrices. Generally, kernel combination approaches relied heavily on the training data and had to learn some weights to indicate the importance of each kernel. Our compositional method avoids learning any weight and the importance of the kernel functions are directly derived in the process of learning kernel machines. The performance of the proposed kernel combination procedure is illustrated by some experiments in comparison with classifier combining based on the same kernels.
引用
收藏
页码:22 / +
页数:2
相关论文
共 50 条
  • [1] A combination fingerprint classifier
    Senior, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (10) : 1165 - 1174
  • [2] CCC: Classifier Combination via Classifier
    Lu, Can-Yi
    ADVANCED INTELLIGENT COMPUTING, 2011, 6838 : 100 - 107
  • [3] A 'No Panacea Theorem' for classifier combination
    Hu, Roland
    Damper, R. I.
    PATTERN RECOGNITION, 2008, 41 (08) : 2665 - 2673
  • [4] Classifier Combination with Kernelized EigenClassifiers
    Ekmekci, Umit
    Cataltepe, Zehra
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 743 - 749
  • [5] Classifier combination in speech recognition
    Felföldi, László
    Kocsor, András
    Tóth, Lászlo
    Periodica Polytechnica Electrical Engineering, 2003, 47 (1-2): : 125 - 140
  • [6] On the effect of calibration in classifier combination
    Antonio Bella
    Cèsar Ferri
    José Hernández-Orallo
    María José Ramírez-Quintana
    Applied Intelligence, 2013, 38 : 566 - 585
  • [7] Study of a classifier combination scheme
    Li, CH
    Yang, B
    Xie, WX
    CHINESE JOURNAL OF ELECTRONICS, 2002, 11 (04): : 542 - 545
  • [8] Lipreading: A classifier combination approach
    Yu, K
    Jiang, XY
    Bunke, H
    PATTERN RECOGNITION LETTERS, 1997, 18 (11-13) : 1421 - 1426
  • [9] A classifier combination tree algorithm
    McDonald, RA
    Eckley, IA
    Hand, DJ
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 609 - 617
  • [10] On the effect of calibration in classifier combination
    Bella, Antonio
    Ferri, Cesar
    Hernandez-Orallo, Jose
    Jose Ramirez-Quintana, Maria
    APPLIED INTELLIGENCE, 2013, 38 (04) : 566 - 585