Compact Kahler manifolds with no projective specialization

被引:0
|
作者
Voisin, Claire [1 ]
机构
[1] CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
来源
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
HOMOTOPY TYPES;
D O I
10.1007/s40574-021-00288-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of a compact Kahler manifold which does not fit in a proper flat family over an irreducible base with one projective (possibly singular) fiber. We also give a topological version of this statement. This strengthens our earlier counterexamples to the Kodaira algebraic approximation problem.
引用
收藏
页码:353 / 364
页数:12
相关论文
共 50 条
  • [1] Compact Kähler manifolds with no projective specialization
    Claire Voisin
    Bollettino dell'Unione Matematica Italiana, 2022, 15 : 353 - 364
  • [2] On the homotopy types of compact Kahler and complex projective manifolds
    Voisin, C
    INVENTIONES MATHEMATICAE, 2004, 157 (02) : 329 - 343
  • [3] The monodromy theorem for compact Kahler manifolds and smooth quasi-projective varieties
    Budur, Nero
    Liu, Yongqiang
    Wang, Botong
    MATHEMATISCHE ANNALEN, 2018, 371 (3-4) : 1069 - 1086
  • [4] Finite morphisms of projective and Kahler manifolds
    Peternell, Thomas
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 685 - 694
  • [5] Construction of projective special Kahler manifolds
    Mantegazza, Mauro
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) : 2645 - 2687
  • [6] Kahler packings of projective complex manifolds
    Fleming, Aeran
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1382 - 1400
  • [7] PREHOMOGENEOUS COMPACT KAHLER MANIFOLDS
    AKAO, K
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07): : 483 - 485
  • [8] Holomorphically Projective Mappings of Special Kahler Manifolds
    Kiosak, V.
    Savchenko, A.
    Shevchenko, T.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'18), 2018, 2025
  • [9] ON HOLOMORPHICALLY PROJECTIVE MAPPINGS OF PARABOLIC KAHLER MANIFOLDS
    Peska, P.
    Mikes, J.
    Chuda, H.
    Shiha, M.
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 1011 - 1019
  • [10] On the Albanese maps of compact Kahler manifolds
    Campana, F
    Peternell, T
    Zhang, Q
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) : 549 - 553