Using a 3-Layer Artificial Neural Network to Predict S-Nitrosylation

被引:0
|
作者
Anand, Vijay
Liu, Ziping
Gow, Andrew
机构
来源
FASEB JOURNAL | 2021年 / 35卷
关键词
D O I
10.1096/fasebj.2021.35.S1.05160
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] RecSNO: Prediction of Protein S-Nitrosylation Sites Using a Recurrent Neural Network
    Siraj, Arslan
    Chantsalnyam, Tuvshinbayar
    Tayara, Hilal
    Chong, Kil To
    IEEE ACCESS, 2021, 9 : 6674 - 6682
  • [2] EXPERIMENTAL DEMONSTRATION OF OPTICAL 3-LAYER NEURAL NETWORK
    KASAMA, N
    HAYASAKI, Y
    YATAGAI, T
    MORI, M
    ISHIHARA, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1990, 29 (08): : L1565 - L1568
  • [3] Products of S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase: Relation between S-nitrosylation and oxidation
    Schmalhausen, E., V
    Medvedeva, M., V
    Serebryakova, M., V
    Chagovets, V. V.
    Muronetz, V., I
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2022, 1866 (01):
  • [4] 3-LAYER NEURAL NETWORK MODELS FOR ROTATED PATTERNS RECOGNITION
    SUZAKI, K
    ARAYA, S
    NAKAMURA, R
    IFIP TRANSACTIONS A-COMPUTER SCIENCE AND TECHNOLOGY, 1992, 12 : 667 - 673
  • [5] Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches
    Li, Bi-Qing
    Hu, Le-Le
    Niu, Shen
    Cai, Yu-Dong
    Chou, Kuo-Chen
    JOURNAL OF PROTEOMICS, 2012, 75 (05) : 1654 - 1665
  • [6] S-nitrosylation of platelet αIIbβ3 as revealed by Raman spectroscopy
    Walsh, Geraldine M.
    Leane, Deirdre
    Moran, Niamh
    Keyes, Tia E.
    Forster, Robert J.
    Kenny, Dermot
    O'Neill, Sarah
    BIOCHEMISTRY, 2007, 46 (21) : 6429 - 6436
  • [7] Image Classification with a 3-Layer SOA-Based Photonic Integrated Neural Network
    Shi, B.
    Calabretta, N.
    Stabile, R.
    2019 24TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) AND 2019 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING AND COMPUTING (PSC), 2019,
  • [8] Using an artificial neural network to predict traumatic brain injury
    Hale, Andrew T.
    Stonko, David P.
    Lim, Jaims
    Guillamondegui, Oscar D.
    Shannon, Chevis N.
    Patel, Mayur B.
    JOURNAL OF NEUROSURGERY-PEDIATRICS, 2019, 23 (02) : 219 - 226
  • [9] Using an Artificial Neural Network to Predict Loop Transformation Time
    Palkowski, Marek
    Bielecki, Wlodzimierz
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2015, 9119 : 102 - 111
  • [10] Using Artificial Neural Network to Predict a Variety of Pathogenic Microorganisms
    Liao, Yu-Hsuan
    Yu, Yu-Ning
    Abbod, Maysam F.
    Shih, Chung-Hung
    Shieh, Jiann-Shing
    SENSORS AND MATERIALS, 2020, 32 (07) : 2375 - 2385