Fractal trees with side branching

被引:40
|
作者
Newman, WI [1 ]
Turcotte, DL
Gabrielov, AM
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Cornell Univ, Dept Geol Sci, Ithaca, NY 14853 USA
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA
来源
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE | 1997年 / 5卷 / 04期
关键词
D O I
10.1142/S0218348X97000486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers fractal trees with self-similar side branching. The Tokunaga classification system for side branching is introduced, along with the Tokunaga self-similarity condition. Area filling (D = 2) and volume filling (D = 3) deterministic fractal tree constructions are introduced both with and without side branching. Applications to diffusion limited aggregation (DLA), actual drainage networks, as well as biology are considered. It is suggested that the Tokunaga taxonomy may have wide applicability in nature.
引用
收藏
页码:603 / 614
页数:12
相关论文
共 50 条
  • [1] UNIFORMLY BRANCHING TREES
    Bonk, Mario
    Meyer, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 3841 - 3897
  • [2] The fractal branching of an arborescent sponge
    Abraham, ER
    MARINE BIOLOGY, 2001, 138 (03) : 503 - 510
  • [3] The fractal branching of an arborescent sponge
    Edward R. Abraham
    Marine Biology, 2001, 138 : 503 - 510
  • [4] Microfabricated fractal branching networks
    Vozzi, G
    Previti, A
    Ciaravella, G
    Ahluwalia, A
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2004, 71A (02) : 326 - 333
  • [5] GENERALIZED MARKOV BRANCHING TREES
    Crane, Harry
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (01) : 108 - 133
  • [6] The Laplacian on rapidly branching trees
    Fujiwara, K
    DUKE MATHEMATICAL JOURNAL, 1996, 83 (01) : 191 - 202
  • [7] DICHOTOMOUS BRANCHING OF MONOCOTYLEDONOUS TREES
    GREGUSS, P
    PHYTOMORPHOLOGY, 1968, 18 (04): : 515 - &
  • [8] COUPLING ON WEIGHTED BRANCHING TREES
    Chen, Ningyuan
    Olvera-Cravioto, Mariana
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (02) : 499 - 524
  • [9] Benzenoids with branching graphs that are trees
    Gutman, I
    Kirby, EC
    CROATICA CHEMICA ACTA, 2000, 73 (04) : 943 - 955
  • [10] Branching Out with Coevolutionary Trees
    Segraves K.A.
    Evolution: Education and Outreach, 2010, 3 (1) : 62 - 70