Turnout detection and classification using a modified HOG and template matching

被引:0
|
作者
Espino, Jorge Corsino [1 ]
Stanciulescu, Bogdan [2 ]
机构
[1] SIEMENS SAS Infrastruct & Cities, Div Mobil & Logist, F-92320 Chatillon, France
[2] Robot Ctr, F-75272 Paris, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a railway track and turnout detection and turnout classification algorithm. The railway track extraction is based on an edge detection using the width of the rolling pads. This edge detection scheme is then used as an input to the RANSAC algorithm to determine the model of the rails knowing their gauge. The turnout detection scheme is based on the Histogram of Oriented Gradient (HOG) and Template Matching (TM). The turnout classification is based on HOG. The detection results show (i) reliable performance for our railway track extraction scheme; (ii) a correction rate of 97.31 percent for the turnout detection scheme using a Support Vector Machine (SVM) classifier. The turnout classification has correction rate of 98.72 percent using SVM.
引用
收藏
页码:2045 / 2050
页数:6
相关论文
共 50 条
  • [1] Object Detection using Template and HOG Feature Matching
    Sultana, Marjia
    Ahmed, Tasniya
    Chakraborty, Partha
    Khatun, Mahmuda
    Hasan, Md Rakib
    Uddin, Mohammad Shorif
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (07) : 233 - 238
  • [2] Rail and turnout detection using gradient information and template matching
    Espino, Jorge Corsino
    Stanciulescu, Bogdan
    Forin, Philippe
    2013 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT RAIL TRANSPORTATION (ICIRT), 2013, : 234 - 239
  • [3] Automatic ECG Image Classification Using HOG and RPC Features by Template Matching
    Rathikarani, V.
    Dhanalakshmi, P.
    Vijayakumar, K.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 3, 2016, 381 : 117 - 125
  • [4] Mosaic Block Detection Based on HOG with SVM Classifier and Template Matching
    Shirasuka, Keiichi
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2018,
  • [5] Automated spectral classification using template matching
    Duan, Fu-Qing
    Liu, Rong
    Guo, Ping
    Zhou, Ming-Quan
    Wu, Fu-Chao
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (03) : 341 - 348
  • [6] Automated spectral classification using template matching
    Fu-Qing Duan1
    2 Base Department
    Research in Astronomy and Astrophysics, 2009, 9 (03) : 341 - 348
  • [7] Face Movement Detection Using Template Matching
    Zarkasi, Ahmad
    Nurmaini, Siti
    Stiawan, Deris
    Firdaus
    Ubaya, Huda
    Sanjaya, Yogie
    Kunang, Yesi Novaria
    2018 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS), 2018, : 333 - 338
  • [8] Brain abnormality detection using template matching
    Praveen, G. B.
    Agrawal, Anita
    Pareek, Shrey
    Prince, Amalin
    BIO-ALGORITHMS AND MED-SYSTEMS, 2018, 14 (04)
  • [9] Template matching route classification
    Kinney, Mitchell
    JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2020, 16 (02) : 133 - 142
  • [10] UAV Detection Using Template Matching and Centroid Tracking
    Hanzla, Muhammad
    Yusuf, Muhammad Ovais
    Sadiq, Touseef
    Al Mudawi, Naif
    Rahman, Hameedur
    Alazeb, Abdulwahab
    Alarfaj, Aisha Ahmed
    Algarni, Asaad
    IEEE ACCESS, 2024, 12 : 129362 - 129375