Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption

被引:88
|
作者
De Decker, Jeroen [1 ]
Folens, Karel [2 ]
De Clercq, Jeriffa [3 ]
Meledina, Maria [4 ]
Van Tendeloo, Gustaaf [4 ]
Du Laing, Gijs [2 ]
Van Der Voort, Pascal [1 ]
机构
[1] Univ Ghent, COMOC, Dept Inorgan & Phys Chem, Krijgslaan 281-S3, B-9000 Ghent, Belgium
[2] Univ Ghent, Lab Analyt Chem & Appl Ecochem, Coupure Links 653, B-9000 Ghent, Belgium
[3] Univ Ghent, Ind Catalysis & Adsorpt Technol INCAT, Dept Mat Text & Chem Engn, Vaerwyckweg 1, B-9000 Ghent, Belgium
[4] Univ Antwerp, EMAT, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
关键词
Metal-organic frameworks; Adsorption; Uranium; Environmental chemistry; METAL-ORGANIC FRAMEWORKS; BUILDING MOF BOTTLES; ACTIVATED CARBON; NUCLEAR-FUEL; HEAVY-METALS; REMOVAL; ACID; SEPARATION; SORPTION; IONS;
D O I
10.1016/j.jhazmat.2017.04.029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32 mg U/g (pH 3) and 27.99 mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375 min. The adsorbed U(VI) is easily recovered by desorption in 0.1 M HNO3. Three adsorption/desorption cycles were performed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Superior Adsorption Efficiency of MIL-101 (Cr) and Nano-MIL-101 (Cr) in Anionic and Cationic Dye Removal from Aqueous Solution
    GokirmakSogut, Eda
    CHEMISTRYSELECT, 2023, 8 (21):
  • [2] Effects of various factors on adsorption of MIL-101(Cr) for dyes in aqueous solutions
    Xu, Yanli
    Yang, Hanbiao
    Lü, Mengmeng
    Chen, Qi
    Liu, Xueting
    Wei, Fengyu
    Huagong Xuebao/CIESC Journal, 2015, 66 (10): : 4025 - 4031
  • [3] Carbamoylmethylphosphine Oxide-Functionalized MIL-101(Cr) as Highly Selective Uranium Adsorbent
    De Decker, Jeroen
    Rochette, Julie
    De Clercq, Jeriffa
    Florek, Justyna
    Van Der Voort, Pascal
    ANALYTICAL CHEMISTRY, 2017, 89 (11) : 5679 - 5683
  • [4] Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites
    Lin, Yichao
    Lin, Hao
    Wang, Haimin
    Suo, Yange
    Li, Baihai
    Kong, Chunlong
    Chen, Liang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (35) : 14658 - 14665
  • [5] Selective recovery and separation of rare earth elements by organophosphorus modified MIL-101(Cr)
    Kavun, Vitalii
    van der Veen, Monique A.
    Repo, Eveliina
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 312
  • [6] Glucose recovery from aqueous solutions by adsorption in metalorganic framework MIL-101: a molecular simulation study
    Gupta, Krishna M.
    Zhang, Kang
    Jiang, Jianwen
    SCIENTIFIC REPORTS, 2015, 5
  • [7] Metal-Organic Frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for Aromatic Amines Adsorption from Aqueous Solutions
    Chen, Mao-Long
    Zhou, Shu-Yang
    Xu, Zhou
    Ding, Li
    Cheng, Yun-Hui
    MOLECULES, 2019, 24 (20):
  • [8] Modulation of MIL-101(Cr) morphology and selective removal of dye from water
    Xu, Wenjing
    Ye, Liuqing
    Li, Wei
    Zhang, Zhanying
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2021, 18 (01) : 159 - 166
  • [9] Synthesis of amino acid modified MIL-101 and efficient uranium adsorption from water
    Zhang, Gege
    Fang, Yueguang
    Wang, Yudan
    Liu, Lijia
    Mei, Douchao
    Ma, Fuqiu
    Meng, Yujiang
    Dong, Hongxing
    Zhang, Chunhong
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 349
  • [10] Target adsorption of indomethacin sodium from aqueous solutions using mixed-ligand MIL-101(Cr)
    Zhang, Xiaxi
    Wei, Fen
    Bao, Tao
    Wang, Sicen
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 311