Geometry of differential operators, odd Laplacians, and homotopy algebras

被引:1
|
作者
Khudaverdian, H [1 ]
Voronov, T [1 ]
机构
[1] Univ Manchester, Inst Sci Technol, Dept Math, Manchester M13 9PL, Lancs, England
关键词
D O I
10.2991/jnmp.2004.11.s1.29
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a complete description of differential operators generating a given bracket. In particular we consider the case of Jacobi-type identities for odd operators and brackets. This is related with homotopy algebras using the derived bracket construction.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 50 条
  • [1] Geometry of differential operators, odd Laplacians, and homotopy algebras
    Hovhannes Khudaverdian
    Theodore Voronov
    Journal of Nonlinear Mathematical Physics, 2004, 11 : 217 - 227
  • [2] Geometry of differential operators and odd Laplace operators
    Voronov, TT
    Khudaverdian, HM
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (01) : 197 - 198
  • [3] Microformal Geometry and Homotopy Algebras
    Th. Th. Voronov
    Proceedings of the Steklov Institute of Mathematics, 2018, 302 : 88 - 129
  • [4] Microformal Geometry and Homotopy Algebras
    Voronov, Th. Th.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 302 (01) : 88 - 129
  • [5] On forms, cohomology and BV Laplacians in odd symplectic geometry
    R. Catenacci
    C. A. Cremonini
    P. A. Grassi
    S. Noja
    Letters in Mathematical Physics, 2021, 111
  • [6] On forms, cohomology and BV Laplacians in odd symplectic geometry
    Catenacci, R.
    Cremonini, C. A.
    Grassi, P. A.
    Noja, S.
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [8] Cohomology theories for homotopy algebras and noncommutative geometry
    Hamilton, Alastair
    Lazarev, Andrey
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (03): : 1503 - 1583
  • [9] Homotopy BV-algebras in Hermitian geometry
    Cirici, Joana
    Wilson, Scott O.
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 204
  • [10] Volichenko algebras as algebras of differential operators
    Iyer, Uma N.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (01) : 34 - 49