A COMPARATIVE INVESTIGATION OF Al2O3/H2O, SiO2/H2O AND ZrO2/H2O NANOFLUID FOR HEAT TRANSFER APPLICATIONS

被引:0
|
作者
Iqbal, S. M. [1 ]
Raj, C. S. [2 ]
Michael, J. J. [3 ]
Irfan, A. M. [3 ]
机构
[1] Anna Univ, Dept Mech Engn, Madras 600025, Tamil Nadu, India
[2] AVC Coll Engn, Dept Mech Engn, Mayiladuthurai 609305, India
[3] Veltech Univ, Dept Mech Engn, Madras 600062, Tamil Nadu, India
关键词
Nanofluid; Thermal conductivity; Viscosity; Al2O3; SiO2; ZrO2; FRICTION FACTOR CHARACTERISTICS; THERMAL-CONDUCTIVITY; THERMOPHYSICAL PROPERTIES; TRANSFER ENHANCEMENT; VISCOSITY; TEMPERATURE; SUSPENSIONS; AL2O3/WATER; WATER;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, a direct comparison of the thermo-physical properties such as thermal conductivity and viscosity which are dominating the convective heat transfer phenomena of different nanofluids with three different volumetric concentration (0.5%, 0.75% and 1%) when calculated quantity of nanoparticles like Al2O3 (Alumina), SiO2 (Silica) and ZrO2 (Zirconia) were dispersed in deionized (DI) water were investigated. Al2O3/H2O and SiO2/H2O nanofluids were prepared without using any surfactant and ZrO2/H2O nanofluid prepared with surfactant yttriumoxide. The obtained results showed thatthermal conductivity enhancement of 10.13% for Al2O3/H2O, 6.5% for SiO2/H2O and 8.5% for ZrO2/H2O at 1% volume concentration. Besides, the results showed that the viscosity increases with increase of particle volume concentration. Finally, the experimental results were compared within their corresponding theoretical data outcomes and the results are found to be in good agreement.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 50 条
  • [1] CFD study on heat transfer and pressure drop of nanofluids (SiO2/H2O, Al2O3/H2O, CNTs/H2O) in a concentric tube heat exchanger
    Gupta, Ankit Kumar
    Gupta, Bhupendra
    Bhalavi, Jyoti
    Baredar, Prashant
    Parmar, Hemant
    Senthil, Ramalingam
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2021, 43 (01) : 4578 - 4593
  • [2] ZUR BINDUNG DES WASSERS IN DEN SYSTEMEN AL2O3/H2O, SIO2/H2O UND FE2O3/H2O
    GLEMSER, O
    RIECK, G
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1958, 297 (3-4): : 175 - 188
  • [3] A correlation of nanofluid flow boiling heat transfer based on the experimental results of AlN/H2O and Al2O3/H2O nanofluid
    Wang, Y.
    Deng, K. H.
    Liu, B.
    Wu, J. M.
    Su, G. H.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 80 : 376 - 383
  • [4] CFD analysis of heat transfer enhancement in a concentric tube counter flow heat exchanger using nanofluids (SiO2/H2O, Al2O3/H2O, CNTs/H2O) and twisted tape turbulators
    Saini R.
    Gupta B.
    Prasad Shukla A.
    Singh B.
    Baredar P.
    Bisen A.
    Materials Today: Proceedings, 2023, 76 : 418 - 429
  • [5] THE SIMPLE CLUSTERS (H3O+)(H2O)1, (H3O+)(H2O)2, (H3O+)(H2O)3
    SCHAEFER, HF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1985, 189 (APR-): : 103 - PHYS
  • [6] The water dimer reaction OH + (H2O)2 → (H2O)-OH + H2O
    Gao, Aifang
    Li, Guoliang
    Peng, Bin
    Xie, Yaoming
    Schaefer, Henry F., III
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (28) : 18279 - 18287
  • [7] Enhanced heat transfer in H2O inspired by Al2O3 and γAl2O3 nanomaterials and effective nanofluid models
    Adnan
    Khan, Umar
    Ahmed, Naveed
    Mohyud-Din, Syed Tauseef
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (05)
  • [8] The water trimer reaction OH + (H2O)3 → (H2O)2OH + H2O
    Gao, Aifang
    Li, Guoliang
    Peng, Bin
    Weidman, Jared D.
    Xie, Yaoming
    Schaefer, Henry F.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (17) : 9767 - 9774
  • [9] EXPERIMENTAL STUDY ON ALN/H2O AND AL2O3/H2O NANOFLUID FLOW BOILING HEAT TRANSFER AND ITS INFLUENCE FACTORS IN A VERTICAL TUBE
    Wang, Y.
    Deng, K. H.
    Liu, B.
    Wu, J. M.
    Su, G. H.
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2016, VOL 3, 2016,
  • [10] STUDY OF ADSORPTION THERMOCHEMISTRY FOR γ-Al2O3 SYSTEMS——HEAT CAPACITIES AND PHASE TRANSITIONS OF H2O/γ-Al2O3·H2O ADSORPTION SYSTEMS
    周立幸
    陈淑霞
    郑禄彬
    Science Bulletin, 1988, (12) : 991 - 994