Jackson's integral of multiple Hurwitz-Lerch zeta functions and multiple gamma functions

被引:0
|
作者
Hu, Su [1 ]
Kim, Daeyeoul [2 ,3 ]
Kim, Min-Soo [4 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Chonbuk Natl Univ, Dept Math, 567 Baekje Daero, Jeonju Si 54896, Jeollabuk Do, South Korea
[3] Chonbuk Natl Univ, Inst Pure & Appl Math, 567 Baekje Daero, Jeonju Si 54896, Jeollabuk Do, South Korea
[4] Kyungnarn Univ, Div Math Sci & Comp, 7 Woryeong Dong Kyungnamdaehak Ro, Changwon Si 51767, Gyeongsangnam D, South Korea
关键词
Jackson integral; Raabe type formula; Multiple Hurwitz-Lerch zeta function; Barnes gamma function;
D O I
10.1016/j.jmaa.2018.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Jackson integral, we obtain the q-integral analogue of Raabe's 1843 formula for Barnes multiple Hurwitz-Lerch zeta functions and Barnes and Vardi's multiple gamma functions. Our results generalize q-integral analogue of the Raabe type formulas for the Hurwitz zeta functions and log gamma functions in [9]. During the proof we also obtain a new formula on the relationship between the higher and lower orders Hurwitz zeta functions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 50 条
  • [1] AN INTEGRAL REPRESENTATION OF MULTIPLE HURWITZ-LERCH ZETA FUNCTIONS AND GENERALIZED MULTIPLE BERNOULLI NUMBERS
    Komori, Yasushi
    QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (04): : 437 - 496
  • [2] Real zeros of Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta functions
    Nakamura, Takashi
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (01) : 39 - 50
  • [3] Further Generalization of the Extended Hurwitz-Lerch Zeta Functions
    Parmar, Rakesh K.
    Choi, Junesang
    Purohit, Sunil Dutt
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (01): : 177 - 190
  • [4] Some formulas related to Hurwitz-Lerch zeta functions
    Nakamura, Takashi
    RAMANUJAN JOURNAL, 2010, 21 (03): : 285 - 302
  • [5] A New Representation for Srivastava's λ-Generalized Hurwitz-Lerch Zeta Functions
    Tassaddiq, Asifa
    SYMMETRY-BASEL, 2018, 10 (12):
  • [6] SOME GENERAL HURWITZ-LERCH TYPE ZETA FUNCTIONS ASSOCIATED WITH THE SRIVASTAVA-DAOUST MULTIPLE HYPERGEOMETRIC FUNCTIONS
    Srivastava, H. M.
    Chandel, R. C. Singh
    Kumar, H.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (04): : 299 - 315
  • [7] Asymptotic behavior of the Hurwitz-Lerch multiple zeta functions at non-positive integer points
    Murahara, Hideki
    Onozuka, Tomokazu
    ACTA ARITHMETICA, 2022, : 191 - 210
  • [8] Finite Hurwitz-Lerch Functions
    Batir, Necdet
    Chen, Kwang-Wu
    FILOMAT, 2019, 33 (01) : 101 - 109
  • [9] A New Family of the λ-Generalized Hurwitz-Lerch Zeta Functions with Applications
    Srivastava, H. M.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1485 - 1500
  • [10] A SUBCLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE HURWITZ-LERCH ZETA FUNCTION
    Murugusundaramoorthy, Gangadharan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (02): : 265 - 272