The geometric structure of deformed nanotubes and the topological coordinates

被引:33
|
作者
László, I
Rassat, A
机构
[1] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, H-1521 Budapest, Hungary
[2] Ecole Normale Super, Dept Chim, F-75231 Paris 05, France
关键词
D O I
10.1021/ci020070k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
After summarizing the harmonic approach to topological coordinates and the null space embedding of graphs, three-coordinated tiling of the plane by hexagons, pentagons, and heptagons are presented and used for the construction of tubular, toroidal, and helical carbon structures. Physically realistic 3D geometries are formed from the corresponding adjacency matrices, and the final structure was obtained with the help of Brenner-potential based molecular mechanics methods.
引用
收藏
页码:519 / 524
页数:6
相关论文
共 50 条
  • [1] Topological coordinates for deformed nanotubes
    László, I
    Rassat, A
    MOLECULAR NANOSTRUCTURES, 2003, 685 : 423 - 426
  • [2] Topological coordinates for nanotubes
    László, István
    Carbon, 1600, 5-6 (983-986):
  • [3] Topological coordinates for nanotubes
    László, I
    CARBON, 2004, 42 (5-6) : 983 - 986
  • [4] Geometric effects in the electronic transport of deformed nanotubes
    Santos, Fernando
    Fumeron, Sebastien
    Berche, Bertrand
    Moraes, Fernando
    NANOTECHNOLOGY, 2016, 27 (13)
  • [5] Topological coordinates transformation and geometric effect on the scattered fields
    Lehman, M
    4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 2001, 4419 : 474 - 477
  • [6] Electronic structure of deformed carbon nanotubes
    Yang, L
    Han, J
    PHYSICAL REVIEW LETTERS, 2000, 85 (01) : 154 - 157
  • [7] Topological Coordinates: Numerically Encoding the Underlying Topological Structure of Plane Graphs
    Saalfeld, Alan
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2009, 36 (01) : 105 - 116
  • [8] Geometric (real) order and topological structure.
    Nobeling, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1941, 183 (1/4): : 37 - 67
  • [9] The geometric structure of single-walled nanotubes
    Lee, Richard K. F.
    Cox, Barry J.
    Hill, James M.
    NANOSCALE, 2010, 2 (06) : 859 - 872
  • [10] Topological and geometric measurements of force-chain structure
    Giusti, Chad
    Papadopoulos, Lia
    Owens, Eli T.
    Daniels, Karen E.
    Bassett, Danielle S.
    PHYSICAL REVIEW E, 2016, 94 (03)