A hybrid Genetic-Grey Wolf Optimization algorithm for optimizing Takagi-Sugeno-Kang fuzzy systems

被引:4
|
作者
Elghamrawy, Sally M. [1 ,2 ]
Hassanien, Aboul Ella [2 ,3 ]
机构
[1] MISR Higher Inst Engn & Technol, Mansoura, Egypt
[2] Sci Res Grp Egypt SRGE, Cairo, Egypt
[3] Cairo Univ, Fac Comp & AI, Cairo, Egypt
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 19期
关键词
Nature-inspired optimization methods; Takagi-Sugeno-Kang Fuzzy System; Grey Wolf Optimizer (GWO); Fuzzy rules; Genetic algorithm (GA); CONTROLLER-DESIGN; NEURAL-NETWORK; RULES; REGULARIZATION; DROPRULE;
D O I
10.1007/s00521-022-07356-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nature-inspired optimization techniques have been applied in various fields of study to solve optimization problems. Since designing a Fuzzy System (FS) can be considered one of the most complex optimization problems, many meta-heuristic optimizations have been developed to design FS structures. This paper aims to design a Takagi-Sugeno-Kang fuzzy Systems (TSK-FS) structure by generating the required fuzzy rules and selecting the most influential parameters for these rules. In this context, a new hybrid nature-inspired algorithm is proposed, namely Genetic-Grey Wolf Optimization (GGWO) algorithm, to optimize TSK-FSs. In GGWO, a hybridization of the genetic algorithm (GA) and the grey wolf optimizer (GWO) is applied to overcome the premature convergence and poor solution exploitation of the standard GWO. Using genetic crossover and mutation operators accelerates the exploration process and efficiently reaches the best solution (rule generation) within a reasonable time. The proposed GGWO is tested on several benchmark functions compared with other nature-inspired optimization algorithms. The result of simulations applied to the fuzzy control of nonlinear plants shows the superiority of GGWO in designing TSK-FSs with high accuracy compared with different optimization algorithms in terms of Root Mean Squared Error (RMSE) and computational time.
引用
收藏
页码:17051 / 17069
页数:19
相关论文
共 50 条
  • [1] A hybrid Genetic–Grey Wolf Optimization algorithm for optimizing Takagi–Sugeno–Kang fuzzy systems
    Sally M. Elghamrawy
    Aboul Ella Hassanien
    Neural Computing and Applications, 2022, 34 : 17051 - 17069
  • [2] Takagi-sugeno-kang fuzzy systems with dynamic rule weights
    Zhang, Yuanpeng
    Chung, Fu-Lai
    Wang, Shitong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (06) : 8535 - 8550
  • [3] Bayesian Takagi-Sugeno-Kang Fuzzy Classifier
    Gu, Xiaoqing
    Chung, Fu-Lai
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (06) : 1655 - 1671
  • [4] Multilabel Takagi-Sugeno-Kang Fuzzy System
    Lou, Qiongdan
    Deng, Zhaohong
    Xiao, Zhiyong
    Choi, Kup-Sze
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3410 - 3425
  • [5] HTBT: A Hybrid DASH Adaptation Algorithm Using Takagi-Sugeno-Kang Fuzzy Model
    Banovic, Radenko
    Kukolj, Dragan
    Basicevic, Ilija
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2023, 23 (01) : 3 - 10
  • [6] Design of adaptive Takagi-Sugeno-Kang fuzzy models
    Kukolj, Dragan
    Applied Soft Computing Journal, 2002, 2 (02): : 89 - 103
  • [7] A hybrid adaptive granular approach to Takagi-Sugeno-Kang fuzzy rule discovery
    Bemani-N, Alireza
    Akbarzadeh-T, M. -R.
    APPLIED SOFT COMPUTING, 2019, 81
  • [8] Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems
    Precup, Radu-Emil
    Filip, Horatiu-Ioan
    Radac, Mircea-Bogdan
    Petriu, Emil M.
    Preitl, Stefan
    Dragos, Claudia-Adina
    APPLIED SOFT COMPUTING, 2014, 24 : 1155 - 1163
  • [9] A Deep Takagi-Sugeno-Kang Fuzzy Classifier for Imbalanced Data
    Bian Z.
    Zhang J.
    Wang S.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (03): : 211 - 224
  • [10] Takagi-Sugeno-Kang Fuzzy Systems for High-Dimensional Multilabel Classification
    Bian, Ziwei
    Chang, Qin
    Wang, Jian
    Pedrycz, Witold
    Pal, Nikhil R.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (06) : 3790 - 3804