An estimation model for state of health of lithium-ion batteries using energy-based features

被引:37
|
作者
Cai, Li [1 ]
Lin, Jingdong [1 ]
Liao, Xiaoyong [1 ]
机构
[1] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
关键词
State of health; Lithium-ion batteries; Energy-based features; Gaussian progress regression; Incomplete discharging; GAUSSIAN PROCESS REGRESSION; USEFUL LIFE PREDICTION; NEURAL-NETWORK; CHARGE; PACKS; SOH;
D O I
10.1016/j.est.2021.103846
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries are pervasive in the renewable-energy based market. A key but challenging issue is accurate state of health (SOH) estimation in battery health monitoring (BHM). The complete discharging curve of battery is rarely available in real world. The incomplete discharging operation affects the subsequent constant current (CC) charging process, which extremely limits many conventional aging features extracted from the complete cycle process. Therefore, under incomplete discharging, the energy-based features are extracted to realize accurate and reliable SOH estimation. The purpose is achieved by an improved Gaussian progress regression (GPR) model. First, the features extracted from direct measurement curves are considered as the inputs of degradation model. A multidimensional linear mean function and a novel covariance function are proposed to adapt the fluctuations. So as to realize accurate batteries SOH estimation. Additionally, several batteries from NASA dataset are applied for the verification of the proposed model from different initial health states. Results demonstrate that this model outperforms the counterparts with a mean RMSE of 0.97% in the testing set.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] State of health estimation of lithium-ion batteries based on interval voltage features
    Li, Zuxin
    Zhang, Fengying
    Cai, Zhiduan
    Xu, Lihao
    Shen, Shengyu
    Yu, Ping
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [2] State of health estimation for lithium-ion battery based on energy features
    Gong, Dongliang
    Gao, Ying
    Kou, Yalin
    Wang, Yurang
    ENERGY, 2022, 257
  • [3] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671
  • [4] State of Health Estimation for Lithium-Ion Batteries Based on Fusion Health Features and Adaboost-GWO-BP Model
    Tong, Liang
    Li, Yiyang
    Chen, Yong
    Kuang, Rao
    Xu, Yonghong
    Zhang, Hongguang
    Peng, Baoying
    Yang, Fubin
    Zhang, Jian
    Gong, Minghui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (11)
  • [5] Model-based state estimation for lithium-ion batteries
    Rausch, Matthias
    Klein, Reinhardt
    Streif, Stefan
    Pankiewitz, Christian
    Findeisen, Rolf
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) : 296 - 311
  • [6] A method for state of energy estimation of lithium-ion batteries based on neural network model
    Dong, Guangzhong
    Zhang, Xu
    Zhang, Chenbin
    Chen, Zonghai
    ENERGY, 2015, 90 : 879 - 888
  • [7] A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model
    Fang, Qiaohua
    Wei, Xuezhe
    Lu, Tianyi
    Dai, Haifeng
    Zhu, Jiangong
    ENERGIES, 2019, 12 (07)
  • [8] A charging-feature-based estimation model for state of health of lithium-ion batteries
    Cai, Li
    Lin, Jingdong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [9] A novel state of health estimation approach based on polynomial model for lithium-ion batteries
    Yuksek, Goekhan
    Alkaya, Alkan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (05):
  • [10] Estimation and Influencing Factor Analysis of Lithium-Ion Batteries State of Health Based on Features Extraction
    Gu J.
    Jiang L.
    Zhang X.
    Hua L.
    Cheng T.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2023, 38 (19): : 5330 - 5342