Skeleton-based action recognition via spatial and temporal transformer networks

被引:233
|
作者
Plizzari, Chiara [1 ,2 ]
Cannici, Marco [1 ]
Matteucci, Matteo [1 ]
机构
[1] Politecn Milan, Via Giuseppe Ponzio 34-5, I-20133 Milan, Italy
[2] Politecn Torino, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Representation learning; Graph CNN; Self-attention; 3D skeleton; Action recognition;
D O I
10.1016/j.cviu.2021.103219
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based Human Activity Recognition has achieved great interest in recent years as skeleton data has demonstrated being robust to illumination changes, body scales, dynamic camera views, and complex background. In particular, Spatial-Temporal Graph Convolutional Networks (ST-GCN) demonstrated to be effective in learning both spatial and temporal dependencies on non-Euclidean data such as skeleton graphs. Nevertheless, an effective encoding of the latent information underlying the 3D skeleton is still an open problem, especially when it comes to extracting effective information from joint motion patterns and their correlations. In this work, we propose a novel Spatial-Temporal Transformer network (ST-TR) which models dependencies between joints using the Transformer self-attention operator. In our ST-TR model, a Spatial Self Attention module (SSA) is used to understand intra-frame interactions between different body parts, and a Temporal Self-Attention module (TSA) to model inter-frame correlations. The two are combined in a two stream network, whose performance is evaluated on three large-scale datasets, NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics Skeleton 400, consistently improving backbone results. Compared with methods that use the same input data, the proposed ST-TR achieves state-of-the-art performance on all datasets when using joints' coordinates as input, and results on-par with state-of-the-art when adding bones information.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] STSD: spatial–temporal semantic decomposition transformer for skeleton-based action recognition
    Hu Cui
    Tessai Hayama
    Multimedia Systems, 2024, 30
  • [2] TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition
    Liu, Haowei
    Liu, Yongcheng
    Chen, Yuxin
    Yuan, Chunfeng
    Li, Bing
    Hu, Weiming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4137 - 4148
  • [3] Pyramid Spatial-Temporal Graph Transformer for Skeleton-Based Action Recognition
    Chen, Shuo
    Xu, Ke
    Jiang, Xinghao
    Sun, Tanfeng
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [4] Local and Global Spatial-Temporal Transformer for skeleton-based action recognition
    Liu, Ruyi
    Chen, Yu
    Gai, Feiyu
    Liu, Yi
    Miao, Qiguang
    Wu, Shuai
    NEUROCOMPUTING, 2025, 634
  • [5] STST: Spatial-Temporal Specialized Transformer for Skeleton-based Action Recognition
    Zhang, Yuhan
    Wu, Bo
    Li, Wen
    Duan, Lixin
    Gan, Chuang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3229 - 3237
  • [6] Focal and Global Spatial-Temporal Transformer for Skeleton-Based Action Recognition
    Gao, Zhimin
    Wang, Peitao
    Lv, Pei
    Jiang, Xiaoheng
    Liu, Qidong
    Wang, Pichao
    Xu, Mingliang
    Li, Wanqing
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 155 - 171
  • [7] Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
    Yan, Sijie
    Xiong, Yuanjun
    Lin, Dahua
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7444 - 7452
  • [8] STSD: spatial-temporal semantic decomposition transformer for skeleton-based action recognition
    Cui, Hu
    Hayama, Tessai
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [9] Spatial-temporal graph attention networks for skeleton-based action recognition
    Huang, Qingqing
    Zhou, Fengyu
    He, Jiakai
    Zhao, Yang
    Qin, Runze
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (05)
  • [10] Advanced skeleton-based action recognition via spatial–temporal rotation descriptors
    Zhongwei Shen
    Xiao-Jun Wu
    Josef Kittler
    Pattern Analysis and Applications, 2021, 24 : 1335 - 1346