Distributed Reinforcement Learning for Age of Information Minimization in Real-Time IoT Systems

被引:30
|
作者
Wang, Sihua [1 ,2 ,3 ]
Chen, Mingzhe [4 ]
Yang, Zhaohui [5 ]
Yin, Changchuan [2 ,3 ]
Saad, Walid [6 ]
Cui, Shuguang [7 ,8 ,9 ,10 ]
Poor, H. Vincent [4 ]
机构
[1] State Key Lab Networking & Switching Technol, Beijing, Peoples R China
[2] Beijing Lab Adv Informat Network, Beijing, Peoples R China
[3] Beijing Univ Posts & Telecommun, Beijing Key Lab Network Syst Architecture & Conve, Beijing 100876, Peoples R China
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[5] UCL, Dept Elect & Elect Engn, London WC1E 6BT, England
[6] Bradley Dept Elect & Comp Engn, Virginia Tech, Wireless VT, Arlington, VA USA
[7] Chinese Univ Hong Kong, Sch Sci & Engn SSE, Shenzhen 518172, Peoples R China
[8] Chinese Univ Hong Kong, Future Network Intelligence Inst FNii, Shenzhen 518172, Peoples R China
[9] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[10] Peng Cheng Lab, Shenzhen 518066, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 国家重点研发计划; 英国工程与自然科学研究理事会;
关键词
Monitoring; Optimization; Internet of Things; Energy consumption; Nonlinear dynamical systems; Vehicle dynamics; Real-time systems; Physical process; sampling frequency; age of information; distributed reinforcement learning; TRAJECTORY DESIGN; INTERNET; UAVS;
D O I
10.1109/JSTSP.2022.3144874
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the problem of minimizing the weighted sum of age of information (AoI) and total energy consumption of Internet of Things (IoT) devices is studied. In the considered model, each IoT device monitors a physical process that follows nonlinear dynamics. As the dynamics of the physical process vary over time, each device should find an optimal sampling frequency to sample the real-time dynamics of the physical system and send sampled information to a base station (BS). Due to limited wireless resources, the BS can only select a subset of devices to transmit their sampled information. Thus, edge devices can cooperatively sample their monitored dynamics based on the local observations and the BS will collect the sampled information from the devices immediately, hence avoiding the additional time and energy used for sampling and information transmission. To this end, it is necessary to jointly optimize the sampling policy of each device and the device selection scheme of the BS so as to accurately monitor the dynamics of the physical process using minimum energy. This problem is formulated as an optimization problem whose goal is to minimize the weighted sum of AoI cost and energy consumption. To solve this problem, we propose a novel distributed reinforcement learning (RL) approach for the sampling policy optimization. The proposed algorithm enables edge devices to cooperatively find the global optimal sampling policy using their own local observations. Given the sampling policy, the device selection scheme can be optimized thus minimizing the weighted sum of AoI and energy consumption of all devices. Simulations with real PM 2.5 pollution data show that the proposed algorithm can reduce the sum of AoI by up to 17.8% and 33.9%, respectively, and the total energy consumption by up to 13.2% and 35.1%, respectively, compared to a conventional deep Q network method and a uniform sampling policy.
引用
收藏
页码:501 / 515
页数:15
相关论文
共 50 条
  • [1] Real-time optimal scheduling for microgrid systems based on distributed deep reinforcement learning
    Guo F.-H.
    He T.
    Wu X.
    Dong H.
    Liu B.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (10): : 1881 - 1889
  • [2] Dynamic Age Minimization With Real-Time Information Preprocessing for Edge-Assisted IoT Devices With Energy Harvesting
    Ling, Xiaoling
    Gong, Jie
    Li, Rui
    Yu, Shuai
    Ma, Qian
    Chen, Xu
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2288 - 2300
  • [3] Reinforcement Learning for Real-Time Optimization in NB-IoT Networks
    Jiang, Nan
    Deng, Yansha
    Nallanathan, Arumugam
    Chambers, Jonathon A.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (06) : 1424 - 1440
  • [4] Real-Time Reinforcement Learning
    Ramstedt, Simon
    Pal, Christopher
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Reinforcement Learning with Sequential Information Clustering in Real-Time Bidding
    Lu, Junwei
    Yang, Chaoqi
    Gao, Xiaofeng
    Wang, Liubin
    Li, Changcheng
    Chen, Guihai
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1633 - 1641
  • [6] Distributed Real-Time Scheduling in Cloud Manufacturing by Deep Reinforcement Learning
    Zhang, Lixiang
    Yang, Chen
    Yan, Yan
    Hu, Yaoguang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8999 - 9007
  • [7] Deep Reinforcement Learning for Resource Protection and Real-Time Detection in IoT Environment
    Liang, Wei
    Huang, Weihong
    Long, Jing
    Zhang, Ke
    Li, Kuan-Ching
    Zhang, Dafang
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) : 6392 - 6401
  • [8] Distributed Real-Time IoT for Autonomous Vehicles
    Philip, Bigi Varghese
    Alpcan, Tansu
    Jin, Jiong
    Palaniswami, Marimuthu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (02) : 1131 - 1140
  • [9] REAL-TIME DISTRIBUTED SYSTEMS
    BARBACCI, MR
    COMPUTER HARDWARE DESCRIPTION LANGUAGES AND THEIR APPLICATIONS, 1993, 32 : 3 - 12
  • [10] Action Evaluation Hardware Accelerator for Next-Generation Real-Time Reinforcement Learning in Emerging IoT Systems
    Sun, Jianchi
    Sharma, Nikhilesh
    Chakareski, Jacob
    Mastronarde, Nicholas
    Lao, Yingjie
    2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, : 428 - 433