Network Robustness: Detecting Topological Quantum Phases

被引:3
|
作者
Chou, Chung-Pin [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
COMPLEX NETWORKS; OPTIMIZATION;
D O I
10.1038/srep07526
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Can the topology of a network that consists of many particles interacting with each other change in complexity when a phase transition occurs? The answer to this question is particularly interesting to understand the nature of the phase transitions if the distinct phases do not break any symmetry, such as topological phase transitions. Here we present a novel theoretical framework established by complex network analysis for demonstrating that across a transition point of the topological superconductors, the network space experiences a homogeneous-heterogeneous transition invisible in real space. This transition is nothing but related to the robustness of a network to random failures. We suggest that the idea of the network robustness can be applied to characterizing various phase transitions whether or not the symmetry is broken.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Network Robustness: Detecting Topological Quantum Phases
    Chung-Pin Chou
    Scientific Reports, 4
  • [2] Robustness of entanglement as an indicator of topological phases in quantum walks
    Wang, Qin-Qin
    Xu, Xiao-Ye
    Pan, Wei-Wei
    Tao, Si-Jing
    Chen, Zhe
    Zhan, Yong-Tao
    Sun, Kai
    Xu, Jin-Shi
    Chen, Geng
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    OPTICA, 2020, 7 (01): : 53 - 58
  • [3] Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice
    Wang, Yan-Pu
    Yang, Wan-Li
    Hu, Yong
    Xue, Zheng-Yuan
    Wu, Ying
    NPJ QUANTUM INFORMATION, 2016, 2
  • [4] Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice
    Yan-Pu Wang
    Wan-Li Yang
    Yong Hu
    Zheng-Yuan Xue
    Ying Wu
    npj Quantum Information, 2
  • [5] Quantum robustness of fracton phases
    Muehlhauser, M.
    Walther, M. R.
    Reiss, D. A.
    Schmidt, K. P.
    PHYSICAL REVIEW B, 2020, 101 (05)
  • [6] Quantum robustness of fracton phases
    Mühlhauser, M.
    Walther, M.R.
    Reiss, D.A.
    Schmidt, K.P.
    1600, American Physical Society (101):
  • [7] Detecting Topological Phases in Cold Atoms
    Liu, Xiong-Jun
    Law, K. T.
    Ng, T. K.
    Lee, Patrick A.
    PHYSICAL REVIEW LETTERS, 2013, 111 (12)
  • [8] Quantum gates with topological phases
    Ionicioiu, R
    PHYSICAL REVIEW A, 2003, 68 (03):
  • [9] MEASURING FUNCTIONAL ROBUSTNESS WITH NETWORK TOPOLOGICAL ROBUSTNESS METRICS
    Haley, Brandon
    Dong, Andy
    Tumer, Irem
    ICED 15, VOL 6: DESIGN METHODS AND TOOLS - PT 2, 2015,
  • [10] Robustness of the Topological Properties of a Seismic Network
    Baek, Woon Hak
    Lim, Gyuchang
    Kim, Kyungsik
    Chang, Ki-Ho
    Jung, Jae-Won
    Seo, Sung-Kyu
    Yi, Myunggi
    Lee, Dong-In
    Ha, Deok-Ho
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 58 (06) : 1712 - 1714