Critical Points of Solutions to Elliptic Equations in Planar Domains with Corners

被引:0
|
作者
Arango, Jaime [1 ]
Delgado, Jairo [2 ]
机构
[1] Univ Valle, Dept Matemat, Calle 13, Cali 10000, Colombia
[2] Univ Valle, Posgrad Ciencias Matemat, Cali 10000, Colombia
关键词
Critical points; Morse theory; Nonlinear elliptic equations; Moving planes;
D O I
10.1007/978-3-319-12583-1_7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the solution u to a semilinear elliptic boundary value problem with Dirichlet boundary condition on an annular planar domain with corners. We prove that u possesses a finite number of critical points and at most one critical curve. For certain annular domains having a regular n-gon as an outer boundary, we rule out the existence of critical curves.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [1] CRITICAL POINTS OF SOLUTIONS TO ELLIPTIC PROBLEMS IN PLANAR DOMAINS
    Arango, Jaime
    Gomez, Adriana
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 327 - 338
  • [2] Critical points of solutions to a kind of linear elliptic equations in multiply connected domains
    Haiyun Deng
    Hairong Liu
    Xiaoping Yang
    Israel Journal of Mathematics, 2022, 249 : 935 - 971
  • [3] CRITICAL POINTS OF SOLUTIONS TO A KIND OF LINEAR ELLIPTIC EQUATIONS IN MULTIPLY CONNECTED DOMAINS
    Deng, Haiyun
    Liu, Hairong
    Yang, Xiaoping
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (02) : 935 - 971
  • [4] The Euler Equations in Planar Domains with Corners
    Christophe Lacave
    Andrej Zlatoš
    Archive for Rational Mechanics and Analysis, 2019, 234 : 57 - 79
  • [5] The Euler Equations in Planar Domains with Corners
    Lacave, Christophe
    Zlatos, Andrej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (01) : 57 - 79
  • [6] Critical points of solutions of degenerate elliptic equations in the plane
    Simone Cecchini
    Rolando Magnanini
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 121 - 138
  • [7] ON THE NUMBER OF CRITICAL POINTS OF SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS
    Grossi, Massimo
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4215 - 4228
  • [8] Critical points of solutions of degenerate elliptic equations in the plane
    Cecchini, Simone
    Magnanini, Rolando
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) : 121 - 138
  • [9] Critical points of A-solutions of quasilinear elliptic equations
    Martio, O
    Miklyukov, VM
    Vuorinen, M
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (03): : 583 - 601
  • [10] Critical points of symmetric solutions to planar quasilinear elliptic problems
    J. Arango
    J. Jiménez
    A. Salazar
    Monatshefte für Mathematik, 2020, 191 : 1 - 11