A unified iterative scheme for solving fully fuzzy linear system

被引:6
|
作者
Gao, Jing [1 ]
Zhang, Qiang [1 ]
机构
[1] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China
关键词
D O I
10.1109/GCIS.2009.114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a unified iterative scheme to solve general fully fuzzy linear,system (FFLS) (A) over tilde(x) over tilde = (b) over tilde in which all parameters are LR fuzzy numbers is discussed By this iterative scheme, we present Gradient iterative algorithm and Least-squares iterative algorithm for solving non-square FFLS. Also,we test the Iterative algorithm and show its effectiveness using a numerical example
引用
收藏
页码:431 / 435
页数:5
相关论文
共 50 条
  • [1] Solving fully fuzzy linear system with arbitrary triangular fuzzy numbers
    Babbar, Neetu
    Kumar, Amit
    Bansal, Abhinav
    SOFT COMPUTING, 2013, 17 (04) : 691 - 702
  • [2] A new method for solving an arbitrary fully fuzzy linear system
    S. Moloudzadeh
    T. Allahviranloo
    P. Darabi
    Soft Computing, 2013, 17 : 1725 - 1731
  • [3] A new method for solving an arbitrary fully fuzzy linear system
    Moloudzadeh, S.
    Allahviranloo, T.
    Darabi, P.
    SOFT COMPUTING, 2013, 17 (09) : 1725 - 1731
  • [4] Huang method for solving fully fuzzy linear system of equations
    Nasseri, S. H.
    Zahmatkesh, F.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2010, 1 (01): : 1 - 5
  • [5] Solving fully fuzzy linear system: A new solution concept
    Abbasi, F.
    Allahviranloo, T.
    INFORMATION SCIENCES, 2022, 589 : 608 - 635
  • [6] Iterative Methods for Solving a System of Linear Equations in a Bipolar Fuzzy Environment
    Akram, Muhammad
    Muhammad, Ghulam
    Koam, Ali N. A.
    Hussain, Nawab
    MATHEMATICS, 2019, 7 (08)
  • [7] A note on “A new method for solving an arbitrary fully fuzzy linear system”
    Diptiranjan Behera
    S. Chakraverty
    Soft Computing, 2017, 21 : 7117 - 7118
  • [8] A note on "A new method for solving an arbitrary fully fuzzy linear system"
    Behera, Diptiranjan
    Chakraverty, S.
    SOFT COMPUTING, 2017, 21 (23) : 7117 - 7118
  • [9] Variational iterative method: an appropriate numerical scheme for solving system of linear Volterra fuzzy integro-differential equations
    S. Narayanamoorthy
    S. Mathankumar
    Advances in Difference Equations, 2018
  • [10] Variational iterative method: an appropriate numerical scheme for solving system of linear Volterra fuzzy integro-differential equations
    Narayanamoorthy, S.
    Mathankumar, S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,