Dynamic Classifier Selection with Confidence Intervals

被引:0
|
作者
Valdovinos, R. M. [1 ]
Sanchez, M. [1 ]
Ruiz, Issachar [1 ]
机构
[1] Univ Autonoma Estado Mexico, Ctr Univ UAEM Valle de Chalco, Computo Aplicado Grp, Valle De Chalco 56615, Mexico
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the ensembles are a popular classification method. In order to obtain the final decision the selection and the fusion methods are used. In this paper, the Dynamic Classifier Selection with Confidence Intervals (DCS-CONFI) method is proposed. This method use confidence intervals for identity the true knowledge or the influence of each individual classifier in the final decision, thus, the member with higher confidence interval is chosen tor classify the test pattern. The experimental results demonstrated the convenience of to determinate the confidence level when the classifier selection scheme is used.
引用
收藏
页码:473 / 482
页数:10
相关论文
共 50 条
  • [1] Dynamic classifier selection
    Giacinto, G
    Roli, F
    MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 177 - 189
  • [2] Ensemble Selection based on Classifier Prediction Confidence
    Tien Thanh Nguyen
    Anh Vu Luong
    Manh Truong Dang
    Liew, Alan Wee-Chung
    McCall, John
    PATTERN RECOGNITION, 2020, 100
  • [3] From dynamic classifier selection to dynamic ensemble selection
    Ko, Albert H. R.
    Sabourin, Robert
    Britto, Alceu Souza, Jr.
    PATTERN RECOGNITION, 2008, 41 (05) : 1718 - 1731
  • [4] Dynamic classifier ensemble using classification confidence
    Li, Leijun
    Zou, Bo
    Hu, Qinghua
    Wu, Xiangqian
    Yu, Daren
    NEUROCOMPUTING, 2013, 99 : 581 - 591
  • [5] 3-level Confidence Voting Strategy for Dynamic Fusion-Selection of Classifier Ensembles
    Fozo, Csaba
    Gaspar-Papanek, Csaba
    ACTA CYBERNETICA, 2009, 19 (01): : 41 - 60
  • [6] Computing confidence intervals for the risk of a SVM classifier through algorithmic inference
    Apolloni, B.
    Bassis, S.
    Gaito, S.
    Malchiodi, D.
    Minora, A.
    BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS, 2005, : 225 - 234
  • [7] Mining Data Streams with Dynamic Confidence Intervals
    Trabold, Daniel
    Horvath, Tamas
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2016, 2016, 9829 : 99 - 113
  • [8] Prototype selection for dynamic classifier and ensemble selection
    Cruz, Rafael M. O.
    Sabourin, Robert
    Cavalcanti, George D. C.
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (02): : 447 - 457
  • [9] Prototype selection for dynamic classifier and ensemble selection
    Rafael M. O. Cruz
    Robert Sabourin
    George D. C. Cavalcanti
    Neural Computing and Applications, 2018, 29 : 447 - 457
  • [10] Valid confidence intervals in regression after variable selection
    Kabaila, P
    ECONOMETRIC THEORY, 1998, 14 (04) : 463 - 482