Layer-by-layer deposition of praseodymium oxide on tin-doped indium oxide (ITO) surface

被引:7
|
作者
Shrestha, S.
Yeung, C. M. Y.
Marken, F.
Mills, C. E.
Tsang, S. C. [1 ]
机构
[1] Univ Reading, Sch Chem, Surface & Catalysis Res Ctr, Reading RG6 6AD, Berks, England
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[3] Smiths Detect, Watford WD23 2BW, Herts, England
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2007年 / 123卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
chemical deposition; praseodymium; oxide; layer-by-layer; chitosan; indium doped tin oxide; conductivity; sensor material;
D O I
10.1016/j.snb.2006.09.008
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:400 / 406
页数:7
相关论文
共 50 条
  • [1] Electrochemical deposition of praseodymium oxide on tin-doped indium oxide as a thin sensing film
    Shrestha, S.
    Marken, F.
    Elliott, J.
    Yeung, C. M. Y.
    Mills, C. E.
    Tsang, S. C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (07) : C517 - C520
  • [2] Pulsed laser deposition of tin-doped indium oxide (ITO) on polycarbonate
    Yong, TK
    Tou, TY
    Teo, BS
    APPLIED SURFACE SCIENCE, 2005, 248 (1-4) : 388 - 391
  • [3] Synthesis and Characterization of Advanced Nanomaterials: Tin-Doped Indium Oxide (ITO) and Platinium Deposited on Tin-Doped Indium Oxide (Pt/ITO)
    Khuong Anh Nguyen Quoc
    Hau Thi Hien Vo
    Tuan Phan Dinh
    Long Giang Bach
    Van Thi Thanh Ho
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (10) : 7246 - 7250
  • [4] Tin-doped indium oxide (ITO) film deposition by ion beam sputtering
    Han, Y
    Kim, D
    Cho, JS
    Koh, SK
    Song, YS
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) : 211 - 218
  • [5] Synthesis of tin oxide, indium oxide and tin-doped indium oxide nanowires by chemical vapor deposition
    Wong, K. K.
    Fung, M. K.
    Sun, Y. C.
    Chen, X. Y.
    Ng, Alan M. C.
    Djurisic, A. B.
    Chan, W. K.
    NANOPHOTONIC MATERIALS VIII, 2011, 8094
  • [6] Controlled synthesis of tin-doped indium oxide (ITO) nanowires
    Li, Luping
    Chen, Shikai
    Kim, Jung
    Xu, Cheng
    Zhao, Yang
    Ziegler, Kirk J.
    JOURNAL OF CRYSTAL GROWTH, 2015, 413 : 31 - 36
  • [7] Sintering of tin-doped indium oxide (Indium-Tin-Oxide, ITO) with Bi2O3 additive
    M. MURAOKA
    M. SUZUKI
    Y. SAWADA†
    J. MATSUSHITA
    Journal of Materials Science, 1998, 33 : 5621 - 5624
  • [8] Sintering of tin-doped indium oxide (Indium-Tin-Oxide, ITO) with Bi2O3 additive
    Muraoka, M
    Suzuki, M
    Sawada, Y
    Matsushita, J
    JOURNAL OF MATERIALS SCIENCE, 1998, 33 (23) : 5621 - 5624
  • [9] Optoelectric Property and Flexibility of Tin-Doped Indium Oxide (ITO) Thin Film
    Park, Ji Young
    Park, Hee Jung
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (06) : 3542 - 3546
  • [10] Indium Tin-Doped Oxide (ITO) as a High Activity Water Oxidation Photoanode
    Sheridan, Matthew, V
    McLachlan, Jeffrey R.
    Gonzalez-Moya, Johan R.
    Cortes-Medina, Nicole D.
    Dares, Christopher J.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 40127 - 40133