Mitoguardin Regulates Mitochondrial Fusion through MitoPLD and Is Required for Neuronal Homeostasis

被引:96
|
作者
Zhang, Yongping [1 ,2 ]
Liu, Xiaoman [1 ,2 ]
Bai, Jian [1 ,2 ,3 ]
Tian, Xuejun [1 ,2 ]
Zhao, Xiaocui [1 ,2 ]
Liu, Wei [1 ,2 ]
Duan, Xiuying [1 ,2 ]
Shang, Weina [1 ,2 ]
Fan, Heng-Yu [1 ,2 ]
Tong, Chao [1 ,2 ]
机构
[1] Zhejiang Univ, Inst Life Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Innovat Ctr Cell Signaling Network, Hangzhou 310058, Zhejiang, Peoples R China
[3] Inst Pasteur, CNRS, UMR3691, 25-28 Rue Dr Roux, F-75015 Paris, France
基金
中国国家自然科学基金;
关键词
DOMINANT OPTIC ATROPHY; PIRNA BIOGENESIS; ENDOPLASMIC-RETICULUM; NUAGE FORMATION; DROSOPHILA; ZUCCHINI; GERMLINE; DYNAMICS; PROTEIN; CELLS;
D O I
10.1016/j.molcel.2015.11.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria undergo frequent morphological changes through fission and fusion. Mutations in core members of the mitochondrial fission/fusion machinery are responsible for severe neurodegenerative diseases. However, the mitochondrial fission/fusion mechanisms are poorly understood. We found that the loss of a mitochondrial protein encoding gene, mitoguardin (miga), leads to mitochondrial defects and neurodegeneration in fly eyes. Mammals express two orthologs of miga: Miga1 and Miga2. Both MIGA1 and MIGA2 form homotypic and heterotypic complexes on the outer membrane of the mitochondria. Loss of MIGA results in fragmented mitochondria, whereas overexpression of MIGA leads to clustering and fusion of mitochondria in both fly and mammalian cells. MIGA proteins function downstream of mitofusin and interact with MitoPLD to stabilize MitoPLD and facilitate MitoPLD dimer formation. Therefore, we propose that MIGA proteins promote mitochondrial fusion by regulating mitochondrial phospholipid metabolism via MitoPLD.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 50 条
  • [1] A Voltage-Gated Calcium Channel Regulates Lysosomal Fusion with Endosomes and Autophagosomes and Is Required for Neuronal Homeostasis
    Tian, Xuejun
    Gala, Upasana
    Zhang, Yongping
    Shang, Weina
    Jaiswal, Sonal Nagarkar
    di Ronza, Alberto
    Jaiswal, Manish
    Yamamoto, Shinya
    Sandoval, Hector
    Duraine, Lita
    Sardiello, Marco
    Sillitoe, Roy V.
    Venkatachalam, Kartik
    Fan, Hengyu
    Bellen, Hugo J.
    Tong, Chao
    PLOS BIOLOGY, 2015, 13 (03):
  • [2] Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity
    Liu, Wei
    Duan, Xiuying
    Fang, Xuefei
    Shang, Weina
    Tong, Chao
    AUTOPHAGY, 2018, 14 (08) : 1293 - 1309
  • [3] Dynamic actin cycling through mitochondrial subpopulations regulates mitochondrial homeostasis.
    Moore, A. S.
    Wong, Y. C.
    Holzbaur, E. L.
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26
  • [4] Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis
    Demarco, Rafael Senos
    Uyemura, Bradley S.
    D'Alterio, Cecilia
    Jones, D. Leanne
    NATURE CELL BIOLOGY, 2019, 21 (06) : 710 - +
  • [5] Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis
    Rafael Sênos Demarco
    Bradley S. Uyemura
    Cecilia D’Alterio
    D. Leanne Jones
    Nature Cell Biology, 2019, 21 : 710 - 720
  • [6] Protosappanin A Maintains Neuronal Mitochondrial Homeostasis through Promoting Autophagic Degradation of Bax
    Liao, Li-Xi
    Wang, Jing-Kang
    Wan, Yan-Jun
    Liu, Yang
    Dong, Xin
    Tu, Peng-Fei
    Zeng, Ke-Wu
    ACS CHEMICAL NEUROSCIENCE, 2020, 11 (24): : 4223 - 4230
  • [7] Taurine regulates mitochondrial calcium homeostasis
    El Idrissi, A
    Trenkner, E
    TAURINE 5: BEGINNING THE 21ST CENTURY, 2003, 526 : 527 - 536
  • [8] Mitochondrial depolarization is not required for neuronal apoptosis
    Krohn, AJ
    Wahlbrink, T
    Prehn, JHM
    JOURNAL OF NEUROSCIENCE, 1999, 19 (17): : 7394 - 7404
  • [9] Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy
    Duraisamy, Arul J.
    Mohammad, Ghulam
    Kowluru, Renu A.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2019, 1865 (06): : 1617 - 1626
  • [10] Neuronal gluconeogenesis regulates systemic glucose homeostasis
    Amrein, Hubert
    Miyamoto, Tetsuya
    CHEMICAL SENSES, 2018, 43 (03) : E6 - E6