Conceptual definition of an ICRF system for the Italian DTT

被引:17
|
作者
Ceccuzzi, S. [1 ]
Cardinali, A. [1 ]
Castaldo, C. [1 ]
Granucci, G. [2 ]
Loschiavo, V. P. [3 ]
Maggiora, R. [4 ]
Milanesio, D. [4 ]
Mirizzi, F. [3 ]
Ravera, G. L. [1 ]
Tuccillo, A. A. [1 ]
机构
[1] ENEA, CR Frascati, Via E Fermi 45, I-00044 Frascati, RM, Italy
[2] Ist Fis Plasma, CNR, Via R Cozzi 53, Milan, Italy
[3] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[4] Politecn Torino, Dipartimento Elettron, Turin, Italy
基金
欧盟地平线“2020”;
关键词
ICRH; DTT; Plasma heating; Antenna coupling; PERFORMANCE;
D O I
10.1016/j.fusengdes.2018.12.068
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
An Italian Divertor Tokamak Test (DTT) facility has been proposed to tackle a major mission of the European roadmap to fusion electricity, i.e. the problem of power exhaust. DTT will rely on an unprecedented amount of additional heating power, including ion-cyclotron resonance frequency (ICRF), to attain a DEMO-relevant power-over-radius ratio crossing the separatrix. This paper reports the status of the ICRF conceptual design, providing the rationale behind main design choices to couple 3 MW to the first DTT plasmafuss (day-1) and up to 10 MW after machine upgrade to full power. The most suitable antenna concepts are identified according to performance documented in literature along with matching schemes able to face fast variation of plasma admittance, and the state-of-the-art of DTT-relevant radiofrequency sources is briefly sketched too. Some preliminary antenna designs are compared on the basis of simulation results, discussing the strengths and weaknesses of each candidate.
引用
收藏
页码:361 / 364
页数:4
相关论文
共 50 条
  • [1] Progress in the development of the ICRF system of DTT
    Ceccuzzi, S.
    Aquilini, M.
    Badodi, N.
    Bonaventura, A.
    Boncagni, L.
    Camera, G.
    Cardinali, A.
    Casalegno, V.
    Castaldo, C.
    Cioffi, A.
    Di Gironimo, G.
    Di Paolo, F.
    Ferraris, M.
    Francalanza, V.
    Galindo-Huertas, D.L.
    Granucci, G.
    Greco, S.
    Grespan, F.
    Lanzotti, F.G.
    Liuzza, D.
    Maddaluno, G.
    Maccari, P.
    Marinari, R.
    Marino, F.
    Mascali, D.
    Mauro, G.S.
    Milanesio, D.
    Mirizzi, F.
    Palmieri, A.
    Pepato, A.
    Petrolini, P.
    Pidatella, A.
    Piras, S.
    Pollastrone, F.
    Ponti, C.
    Raspante, B.
    Ravera, G.L.
    Rocchi, A.
    Romano, R.
    Salvia, C.
    Schettini, G.
    Spinella, G.
    Torrisi, G.
    Tuccillo, A.A.
    Tudisco, O.
    Turganbaev, A.
    Valletti, L.
    Van Eester, D.
    Vecchi, G.
    Venneri, I.
    Fusion Engineering and Design, 2025, 213
  • [2] Preliminary analysis of the ICRF launcher for DTT
    Mirizzi, F.
    Ceccuzzi, S.
    Baiocchi, B.
    Cardinali, A.
    Di Gironimo, G.
    Granucci, G.
    Mascali, D.
    Mauro, G.
    Milanesio, D.
    Pidatella, A.
    Ponti, C.
    Ravera, G. L.
    Torrisi, G.
    Tuccillo, A. A.
    Vecchi, G.
    FUSION ENGINEERING AND DESIGN, 2023, 191
  • [3] DTT device: Conceptual design of the superconducting magnet system
    Di Zenobio, A.
    Albanese, R.
    Anemona, A.
    Biancolini, M. E.
    Bonifetto, R.
    Brutti, C.
    Corato, V.
    Crisanti, F.
    della Corte, A.
    De Marzi, G.
    Zignani, C. Fiamozzi
    Giorgetti, F.
    Messina, G.
    Muzzi, L.
    Savoldi, L.
    Tomassetti, G.
    Turtu, S.
    Villone, F.
    Zappatore, A.
    FUSION ENGINEERING AND DESIGN, 2017, 122 : 299 - 312
  • [4] Preliminary conceptual design of the DTT EC heating system
    Garavaglia, Saul
    Granucci, Gustavo
    Bruschi, Alessandro
    Fanale, Francesco
    Farina, Daniela
    Figini, Lorenzo
    Moro, Alessandro
    Nowak, Silvana
    Ricci, Daria
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 203 - 206
  • [5] Progress on the conceptual design of the antennas for the DTT ECRH system
    Fanale, F.
    Baiocchi, B.
    Bruschi, A.
    Busi, D.
    Bussolan, A.
    Figini, L.
    Garavaglia, S.
    Granucci, G.
    Romano, A.
    FUSION ENGINEERING AND DESIGN, 2023, 192
  • [6] Conceptual design of the Gas Injection and Vacuum System for DTT NBI
    Agostinetti, P.
    Dal Bello, S.
    Dinh, F.
    Ferrara, A.
    Fincato, M.
    Grando, L.
    Mura, M.
    Murari, A.
    Sartori, E.
    Siragusa, M.
    Siviero, F.
    Veronese, F.
    FUSION ENGINEERING AND DESIGN, 2023, 192
  • [7] Guidelines and Conceptual Design of the Grounding System of the DTT Experimental Facility
    Lopes, C. R.
    Terlizzi, C.
    Romano, R.
    Ala, G.
    Zizzo, G.
    Zito, P.
    Bifaretti, S.
    Bonaiuto, V
    Lampasi, A.
    2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022), 2022, : 489 - 494
  • [8] Conceptual Design of the DTT ECRH High Voltage Power Supply System
    Recchia, Mauro
    De Nardi, Marco
    Gaio, Elena
    Granucci, Gustavo
    Garavaglia, Saul
    Rispoli, Natale
    Romano, Afra
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (09) : 4069 - 4074
  • [9] Conceptual design of a neutral beam heating & current drive system for DTT
    Agostinetti, P.
    Bolzonella, T.
    Gobbin, M.
    Sonato, P.
    Spizzo, G.
    Vallar, M.
    Vincenzi, P.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 441 - 446
  • [10] In-vessel piezoelectric actuation system for DTT ECRH launchers: Conceptual design
    Busi, D.
    Braghin, F.
    Bruschi, A.
    Garavaglia, S.
    Granucci, G.
    Romano, A.
    FUSION ENGINEERING AND DESIGN, 2022, 180