An upper bound on the radius of a 3-edge-connected graph

被引:0
|
作者
Dankelmann, Peter [1 ]
Mukwembi, Simon [1 ]
Swart, Henda C. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-4041 Durban, South Africa
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a 3-edge-connected graph of order n and radius rad(G). Then the inequality [GRAPHICS] is proved. Moreover, graphs are constructed to show that the bound is asymptotically sharp.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [1] An upper bound on the radius of a 3-edge-connected C4-free graph
    Fundikwa, Blessings T.
    Mazorodze, Jaya P.
    Mukwembi, Simon
    AFRIKA MATEMATIKA, 2021, 32 (3-4) : 467 - 474
  • [2] An Upper Bound on the Diameter of a 3-Edge-Connected C4-Free Graph
    Blessings T. Fundikwa
    Jaya P. Mazorodze
    Simon Mukwembi
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1931 - 1938
  • [3] AN UPPER BOUND ON THE DIAMETER OF A 3-EDGE-CONNECTED C4-FREE GRAPH
    Fundikwa, Blessings T.
    Mazorodze, Jaya P.
    Mukwembi, Simon
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1931 - 1938
  • [4] An improved upper bound for the TSP in cubic 3-edge-connected graphs
    Gamarnik, D
    Lewenstein, M
    Sviridenko, M
    OPERATIONS RESEARCH LETTERS, 2005, 33 (05) : 467 - 474
  • [5] Improved upper bound on the Frank number of 3-edge-connected graphs
    Barat, Janos
    Blazsik, Zoltan L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [6] AN UPPER BOUND FOR THE RADIUS OF A 3-CONNECTED GRAPH
    HARANT, J
    DISCRETE MATHEMATICS, 1993, 122 (1-3) : 335 - 341
  • [7] MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS OF A GRAPH ONLINE
    GALIL, Z
    ITALIANO, GF
    SIAM JOURNAL ON COMPUTING, 1993, 22 (01) : 11 - 28
  • [8] On 3-Edge-Connected Supereulerian Graphs
    Lai, Hong-Jian
    Li, Hao
    Shao, Yehong
    Zhan, Mingquan
    GRAPHS AND COMBINATORICS, 2011, 27 (02) : 207 - 214
  • [9] On 3-edge-connected supereulerian graphs in graph family C(l, k)
    Li, Xiaomin
    Li, Dengxin
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2010, 310 (17-18) : 2455 - 2459
  • [10] On 3-Edge-Connected Supereulerian Graphs
    Hong-Jian Lai
    Hao Li
    Yehong Shao
    Mingquan Zhan
    Graphs and Combinatorics, 2011, 27 : 207 - 214