Geometric representation of Noether symmetry for dynamical systems

被引:4
|
作者
Liu Chang [1 ]
Zhao Yong-Hong [2 ]
Chen Xiang-Wei [3 ]
机构
[1] Beijing Inst Technol, Dept Appl Mech, Beijing 100081, Peoples R China
[2] Shangqiu Normal Coll, Dept Phys & Informat Engn, Shangqiu 476000, Peoples R China
[3] Shangqiu Normal Coll, Acad Affairs Off, Shangqiu 476000, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamical systems; geometric representation; Noether symmetry; Noether conserved quantity; ADIABATIC INVARIANTS;
D O I
10.7498/aps.59.11
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article Noether symmetry of Lagrange systems, Hamilton systems and Birkhoff systems are discussed by geometric methods. And the corresponding Noether conserved quantities are deduced.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 21 条
  • [1] [Anonymous], 1998, Classical Dynamics: A Contemporary Approach, Classical Dynamics: A Contemporary Approach
  • [2] [Anonymous], 2002, GLOBAL ANAL BIRKHOFF
  • [3] Arnold V. I., 1989, ser. Graduate texts in Mathematics, V60, DOI 10.1007/978-1-4757-2063-1
  • [4] Chen XW, 2005, CHINESE PHYS, V14, P663, DOI 10.1088/1009-1963/14/4/005
  • [5] Chen XW, 2004, CHINESE PHYS, V13, P2003, DOI 10.1088/1009-1963/13/12/005
  • [6] Chen XW, 2003, CHINESE PHYS, V12, P936, DOI 10.1088/1009-1963/12/9/302
  • [7] Li Z. P., 1993, Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties
  • [8] A series of non-Noether conservative quantities and Mei symmetries of nonconservative systems
    Liu Hong-Ji
    Fu Jing-Li
    Tang Yi-Fa
    [J]. CHINESE PHYSICS, 2007, 16 (03): : 599 - 604
  • [9] Variational principle and dynamical equations of discrete nonconservative holonomic systems
    Department of Physics, Shaoguan University, Shaoguan 512005, China
    不详
    [J]. Chin. Phys., 2006, 2 (249-252):
  • [10] Marsden JE., 1999, INTRO MECH SYMMETRY, V17