An analytic basis for multigrid methods for stabilized finite element methods for the Stokes problem

被引:0
|
作者
Cai, Z [1 ]
Douglas, J [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [1] ON THE ERROR ANALYSIS OF STABILIZED FINITE ELEMENT METHODS FOR THE STOKES PROBLEM
    Stenberg, Rolf
    Videman, Juha
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (06) : 2626 - 2633
  • [2] A taxonomy of consistently stabilized finite element methods for the Stokes problem
    Barth, T
    Bochev, P
    Gunzburger, M
    Shadid, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1585 - 1607
  • [3] Projection stabilized nonconforming finite element methods for the stokes problem
    Achchab, Boujemaa
    Agouzal, Abdellatif
    Bouihat, Khalid
    Majdoubi, Adil
    Souissi, Ali
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 218 - 240
  • [4] Stable and stabilized hp-finite element methods for the Stokes problem
    Schötzau, D
    Gerdes, K
    Schwab, C
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 349 - 356
  • [5] Stabilized finite element methods based on multiscale enrichment for the Stokes problem
    Araya, R
    Barrenechea, GR
    Valentin, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) : 322 - 348
  • [6] MULTIGRID METHODS FOR THE GENERALIZED STOKES EQUATIONS BASED ON MIXED FINITE ELEMENT METHODS
    Qing-ping Deng Xiao-ping Feng (Department of Mathematics
    JournalofComputationalMathematics, 2002, (02) : 129 - 152
  • [7] Multigrid methods for the generalized Stokes equations based on mixed finite element methods
    Deng, QP
    Feng, XP
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2002, 20 (02) : 129 - 152
  • [8] ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM
    KECHKAR, N
    SILVESTER, D
    MATHEMATICS OF COMPUTATION, 1992, 58 (197) : 1 - 10
  • [9] On stabilized finite element methods for the Stokes problem in the small time step limit
    Bochev, Pavel B.
    Gunzburger, Max D.
    Lehoucq, Richard B.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (04) : 573 - 597
  • [10] Stabilized finite element methods with fast iterative solution algorithms for the Stokes problem
    Cai, ZQ
    Douglas, J
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) : 115 - 129