A lower bound on the number of triangulations of planar point sets

被引:31
|
作者
Aichholzer, O
Hurtado, F
Noy, M
机构
[1] Graz Univ Technol, Inst Software Technol, A-8010 Graz, Austria
[2] Univ Politecn Catalunya, Dept Matemat Aplicada 2, E-08028 Barcelona, Spain
来源
关键词
straight-edge triangulations; counting; lower bound;
D O I
10.1016/j.comgeo.2004.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the number of straight-edge triangulations exhibited by any set of n points in general position in the plane is bounded from below by Omega (2.33(n)). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 50 条
  • [1] On the number of triangulations of planar point sets
    Seidel, R
    COMBINATORICA, 1998, 18 (02) : 297 - 299
  • [2] The number of triangulations on planar point sets
    Welzl, Emo
    GRAPH DRAWING, 2007, 4372 : 1 - 4
  • [3] Note – On the Number of Triangulations of Planar Point Sets
    Raimund Seidel
    Combinatorica, 1998, 18 : 297 - 299
  • [4] A better upper bound on the number of triangulations of a planar point set
    Santos, F
    Seidel, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 102 (01) : 186 - 193
  • [5] Counting Triangulations of Planar Point Sets
    Sharir, Micha
    Sheffer, Adam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [6] An upper bound for the number of planar lattice triangulations
    Anclin, EE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (02) : 383 - 386
  • [7] Four-Connected Triangulations of Planar Point Sets
    Ajit Arvind Diwan
    Subir Kumar Ghosh
    Bodhayan Roy
    Discrete & Computational Geometry, 2015, 53 : 713 - 746
  • [8] Constrained independence system and triangulations of planar point sets
    Cheng, SW
    Xu, YF
    COMPUTING AND COMBINATORICS, 1995, 959 : 41 - 50
  • [9] Four-Connected Triangulations of Planar Point Sets
    Diwan, Ajit Arvind
    Ghosh, Subir Kumar
    Roy, Bodhayan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 713 - 746
  • [10] On the number of pseudo-triangulations of certain point sets
    Aichholzer, Oswin
    Orden, David
    Santos, Francisco
    Speckmann, Bettina
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) : 254 - 278