Gabor windows supported on [-1,1] and construction of compactly supported dual windows with optimal smoothness

被引:0
|
作者
Lemvig, Jakob [1 ]
Nielsen, Kamilla Haahr [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
关键词
Dual frame; Dual windo; Gabor frame; Optimal smoothness; Redundancy; FRAMES; PAIRS; BASES;
D O I
10.1016/j.jat.2019.105304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Gabor frames {e(2 pi ibm center dot) g(center dot - ak)}m,k is an element of Z with translation parameter a = L/2, modulation parameter b is an element of (0, 2/L) and a window function g is an element of C-n(R) supported on [x(0), x(0) + L] and non-zero on (x(0), x(0)+L) for L > 0 and x(0) is an element of R. The set of all dual windows h is an element of L-2(R) with sufficiently small support is parametrized by 1-periodic measurable functions z. Each dual window h is given explicitly in terms of the function z in such a way that desirable properties (e.g., symmetry, boundedness and smoothness) of h are directly linked to z. We derive easily verifiable conditions on the function z that guarantee, in fact, characterize, compactly supported dual windows h with the same smoothness, i.e., h is an element of C-n(R). The construction of dual windows is valid for all values of the smoothness index n is an element of Z(>= 0) boolean OR {infinity} and for all values of the modulation parameter b < 2/L; since a = L/2, this allows for arbitrarily small redundancy (ab)(-1) > 1. We show that the smoothness of h is optimal, i.e., if g is not an element of Cn+1(R) then, in general, a dual window h in Cn+1(R) does not exist. (C) 2019 Elsevier Inc, All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Gabor windows supported on [-1,1] and compactly supported dual windows
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (01) : 89 - 103
  • [2] On the smoothness of dual windows for Gabor windows supported on [-1,1]
    Lemvig, Jakob
    Nielsen, Kamilla H.
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [3] On compactly supported dual windows of Gabor frames
    Stoeva, Diana T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [4] CONSTRUCTION OF SMOOTH COMPACTLY SUPPORTED WINDOWS GENERATING DUAL PAIRS OF GABOR FRAMES
    Christiansen, Lasse Hjuler
    Christensen, Ole
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (01)
  • [5] Gabor windows supported on [ − 1, 1] and dual windows with small support
    Ole Christensen
    Hong Oh Kim
    Rae Young Kim
    Advances in Computational Mathematics, 2012, 36 : 525 - 545
  • [6] A Geometric Construction of Tight Multivariate Gabor Frames with Compactly Supported Smooth Windows
    Pfander, Goetz E.
    Rashkov, Peter
    Wang, Yang
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (02) : 223 - 239
  • [7] A Geometric Construction of Tight Multivariate Gabor Frames with Compactly Supported Smooth Windows
    Götz E. Pfander
    Peter Rashkov
    Yang Wang
    Journal of Fourier Analysis and Applications, 2012, 18 : 223 - 239
  • [8] Gabor windows supported on [ -aEuroparts per thousand1, 1] and dual windows with small support
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (04) : 525 - 545
  • [9] Compactly supported multiwindow dual Gabor frames of rational sampling density
    Sumi Jang
    Byeongseon Jeong
    Hong Oh Kim
    Advances in Computational Mathematics, 2013, 38 : 159 - 186
  • [10] Compactly supported multiwindow dual Gabor frames of rational sampling density
    Jang, Sumi
    Jeong, Byeongseon
    Kim, Hong Oh
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (01) : 159 - 186