Calculation of the effective properties of thermo-viscoelastic composites using asymptotic homogenization in parametric space

被引:1
|
作者
Vlasov, A. N. [1 ]
Volkov-Bogorodsky, D. B. [1 ]
Savatorova, V. L. [2 ]
机构
[1] Inst Appl Mech RAS, Moscow, Russia
[2] Cent Connecticut State Univ, New Britain, CT 06050 USA
关键词
Structurally inhomogeneous thermo-viscoelastic media; Parametric method of asymptotic homogenization; Effective characteristics of thermo-viscoelastic materials; VISCOELASTIC BEHAVIOR;
D O I
10.1007/s11043-021-09501-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we use the method of asymptotic homogenization in parametric space to determine the effective properties of thermo-viscoelastic composite materials. These materials are composed of multilayered spherical inclusions imbedded in the matrix. In comparison with the traditional method of asymptotic homogenization, our approach allows for regular non-periodic distributions of inhomogeneities as well as dependences of the material characteristics on temperature. We start with the Laplace transform of the governing equations together with their boundary and initial conditions. To do so, we treat temperature and spatial coordinates responsible for non-periodic distribution of inclusions in the material as parameters (along with the parameter of Laplace transform itself). Then we define and implement a two-level scheme of asymptotic homogenization of the resulting equations in parametric space. At the first step, we solve the problem on the microscale level (a cell problem). At the second step, for the images of Laplace transform, we derive the macroscopic equation with effective coefficients. Finally, we perform the inverse Laplace transform to compute relaxation functions and determine thermo-viscoelastic properties of the composite material. The obtained results provide an information on how the change in properties and concentration of the inclusions affect the rheological characteristics and stress relaxation patterns for the thermo-viscoelastic composites.
引用
收藏
页码:565 / 591
页数:27
相关论文
共 50 条
  • [1] Calculation of the effective properties of thermo-viscoelastic composites using asymptotic homogenization in parametric space
    A. N. Vlasov
    D. B. Volkov-Bogorodsky
    V. L. Savatorova
    Mechanics of Time-Dependent Materials, 2022, 26 : 565 - 591
  • [2] Using asymptotic homogenization to determine effective thermo-viscoelastic properties of fibrous composites with interphase layer
    Vlasov, Alexander Nikolaevich
    Volkov-Bogorodsky, Dmitriy Borisovich
    Savatorova, Viktoria
    MATHEMATICS AND MECHANICS OF SOLIDS, 2023, 28 (08) : 1845 - 1862
  • [3] Effective thermo-viscoelastic properties of fibrous composites with fractal interfaces and an interphase
    Dzenis, YA
    COMPOSITES SCIENCE AND TECHNOLOGY, 1997, 57 (08) : 1057 - 1063
  • [4] Asymtotic homogenization of coupled thermo-viscoelastic composites with multiple spatial and temporal scales
    Fish, J
    Yu, Q
    TRENDS IN COMPUTATIONAL STRUCTURAL MECHANICS, 2001, : 99 - 108
  • [5] Thermo-viscoelastic constitutive modeling of polymer composites subjected to space irradiation
    Chao, CP
    Chaturvedi, SK
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1998, 17 (09) : 850 - 869
  • [6] Homogenization of thermo-viscoelastic Kelvin-Voigt model
    Abdessamad, Zouhair
    Kostin, Ilya
    Panasenko, Grigory
    Smyshlyaev, Valery P.
    COMPTES RENDUS MECANIQUE, 2007, 335 (08): : 423 - 429
  • [7] Effective properties of fractional viscoelastic composites via two-scale asymptotic homogenization
    Ramirez-Torres, Ariel
    Penta, Raimondo
    Grillo, Alfio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 16500 - 16520
  • [8] THERMO-VISCOELASTIC RESPONSE OF GRAPHITE EPOXY COMPOSITES
    LIN, KY
    HWANG, IH
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1988, 110 (02): : 113 - 116
  • [9] Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method
    Rodriguez-Ramos, R.
    Otero, J. A.
    Cruz-Gonzalez, O. L.
    Guinovart-Diaz, R.
    Bravo-Castillero, J.
    Sabina, F. J.
    Padilla, P.
    Lebon, F.
    Sevostianov, I
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 190 : 281 - 290
  • [10] Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem
    Yu, Q
    Fish, J
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (26) : 6429 - 6452