Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials

被引:19
|
作者
Wang, Christine A. [1 ]
Goyal, Anish [1 ]
Huang, Robin [1 ]
Donnelly, Joseph [1 ]
Calawa, Daniel [1 ]
Turner, George [1 ]
Sanchez-Rubio, Antonio [1 ]
Hsu, Allen [2 ]
Hu, Qing [2 ]
Williams, B. [3 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
Metalorganic vapor phase epitaxy; Quantum wells; Semiconducting III-V materials; Heterojunction semiconducting devices; Quantum cascade lasers; CONTINUOUS-WAVE OPERATION; VAPOR-PHASE EPITAXY; ROOM-TEMPERATURE; PERFORMANCE; GROWTH;
D O I
10.1016/j.jcrysgro.2009.11.005
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Strain-compensated (SC) GaInAs/AlInAs/InP multiple-quantum-well structures and quantum cascade lasers (QCLs) with strain levels of 1% and as high as 1.5% were grown by organometallic vapor phase epitaxy (OMVPE). The structures were characterized by high-resolution X-ray (HRXRD) diffraction and atomic force microscopy (AFM), and narrow-ridge QCL devices were fabricated. HRXRD and AFM results indicate very high quality materials with narrow satellite peaks, well-defined interference fringes, and a step-flow growth mode for 1% SC materials. A marginal broadening of satellite peaks is measured for 1.5% SC structures, but step-flow growth is maintained. QCLs based on a conventional four-quantum-well double-phonon resonant active region design with nominal 1% SC were grown with doping concentration varied from 1 to 4 x 10(17) cm(-3) in the active region. The performance of ridge lasers under pulsed conditions is comparable to state-of-the-art results for 4.8 mu m devices. QCLs with a novel injectorless four-quantum well QCL design and 1.5% SC operated in pulsed mode at room temperature at 5.5 mu m. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1157 / 1164
页数:8
相关论文
共 50 条
  • [1] Comparison of strain-compensated quantum cascade lasers grown with GaInAs and InP waveguides
    Boehm, G
    Friedrich, A
    Scarpa, G
    Meyer, R
    Amann, MC
    JOURNAL OF CRYSTAL GROWTH, 2005, 278 (1-4) : 765 - 769
  • [2] Gain measurements in strain-compensated quantum cascade laser
    Gresch, Tobias
    Faist, Jerome
    Giovannini, Marcella
    APPLIED PHYSICS LETTERS, 2009, 94 (16)
  • [3] Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers
    Vitiello, Miriam S.
    Gresch, Tobias
    Lops, Antonia
    Spagnolo, Vincenzo
    Scamarcio, Gaetano
    Hoyler, Nicolas
    Giovannini, Marcella
    Faist, Jerome
    APPLIED PHYSICS LETTERS, 2007, 91 (16)
  • [4] MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers
    Gutowski, P.
    Sankowska, I.
    Karbownik, P.
    Pierscinska, D.
    Serebrennikova, O.
    Morawiec, M.
    Pruszynska-Karbownik, E.
    Golaszewska-Malec, K.
    Pierscinski, K.
    Muszalski, J.
    Bugajski, M.
    JOURNAL OF CRYSTAL GROWTH, 2017, 466 : 22 - 29
  • [5] OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers
    Wang, C. A.
    Huang, R. K.
    Goyal, A.
    Donnelly, J. R.
    Calawa, D. R.
    Cann, S. G.
    O'Donnell, F.
    Plant, J. J.
    Missaggia, L. J.
    Turner, G. W.
    Sanchez-Rubio, A.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (23) : 5191 - 5197
  • [6] Doping dependence of millimeterwave negative differential conductance in strain-compensated GaInAs/AlInAs superlattices
    Minot, C
    Harmand, JC
    Esnault, JC
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 294 - 296
  • [7] Research on Wet Etching Techniques for GaInAs/AlInAs/InP Superlattices in Quantum Cascade Laser Fabrication
    Zhang, Shiya
    Zhu, Lianqing
    Jia, Han
    Liu, Bingfeng
    Cui, Jintao
    Chen, Tuo
    Li, Mingyu
    NANOMATERIALS, 2025, 15 (05)
  • [8] High-peak-power strain-compensated GaInAs/AlInAs quantum cascade lasers (λ∼4.6 μm) based on a slightly diagonal active region design
    Yang, Q.
    Loesch, R.
    Bronner, W.
    Hugger, S.
    Fuchs, F.
    Aidam, R.
    Wagner, J.
    APPLIED PHYSICS LETTERS, 2008, 93 (25)
  • [9] Field distribution in waveguide of mid-infrared strain-compensated InAlAs/InGaAs/InP quantum cascade laser
    Pruszynska-Karbownik, Emilia
    Gutowski, Piotr
    Sankowska, Iwona
    Karbownik, Piotr
    Bugajski, Maciej
    OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (02)
  • [10] Short-wavelength (λ≈3.3 μm) InP-based strain-compensated quantum-cascade laser
    Semtsiv, M. P.
    Wienold, M.
    Dressler, S.
    Masselink, W. T.
    APPLIED PHYSICS LETTERS, 2006, 89 (21)