On weights in duadic abelian codes

被引:1
|
作者
Li, QL [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China
[2] Nankai Univ, Minist Educ, Key Lab Pure Math & Combinator, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
duadic abelian codes; primitive idempotent; group algebra; weight;
D O I
10.1016/S0012-365X(02)00673-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that if C is a duadic binary abelian code with splitting mu = mu-1 and the minimum odd weight of C satisfies d(2) - d + 1 not equal n, then d(d - 1) > n + 11. We show by an example that this bound is sharp. A series of open problems on this subject are proposed, (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:223 / 230
页数:8
相关论文
共 50 条