Person re-identification in the real scene based on the deep learning

被引:1
|
作者
Zhu, Miaomiao [1 ]
Gong, Shengrong [2 ]
Qian, Zhenjiang [2 ]
Serikawa, Seiichi [1 ]
Zhang, Lifeng [1 ]
机构
[1] Kyushu Inst Technol, Kitakyushu, Fukuoka 8048550, Japan
[2] Changshu Inst Technol, Changshu 215500, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Deep learning; Pedestrian detection; Person re-identification; Real scene;
D O I
10.1007/s10015-021-00689-9
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Person re-identification aims at automatically retrieving a person of interest across multiple non-overlapping camera views. Because of increasing demand for real-world applications in intelligent video surveillance, person re-identification has become an important computer vision task and achieved high performance in recent years. However, the traditional person re-identification research mainly focus on matching cropped pedestrian images between queries and candidates on commonly used datasets and divided into two steps: pedestrian detection and person re-identification, there is still a big gap with practical applications. Under the premise of model optimization, based on the existing object detection and person re-identification, this paper achieves a one-step search of the specific pedestrians in the whole images or video sequences in the real scene. The experimental results show that our method is effective in commonly used datasets and has achieved good results in real-world applications, such as finding criminals, cross-camera person tracking, and activity analysis.
引用
收藏
页码:396 / 403
页数:8
相关论文
共 50 条
  • [1] Person re-identification in the real scene based on the deep learning
    Miaomiao Zhu
    Shengrong Gong
    Zhenjiang Qian
    Seiichi Serikawa
    Lifeng Zhang
    Artificial Life and Robotics, 2021, 26 : 396 - 403
  • [2] A survey of person re-identification based on deep learning
    Li Q.
    Hu W.-Y.
    Li J.-Y.
    Liu Y.
    Li M.-X.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (05): : 920 - 932
  • [3] Survey on person re-identification based on deep learning
    Wang, Kejun
    Wang, Haolin
    Liu, Meichen
    Xing, Xianglei
    Han, Tian
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2018, 3 (04) : 219 - 227
  • [4] A Survey on Deep Learning Based Person Re-identification
    Luo H.
    Jiang W.
    Fan X.
    Zhang S.-P.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (11): : 2032 - 2049
  • [5] Research of Person Re-identification Based on Deep Learning
    Wang, Haoying
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2150 - 2157
  • [6] Person re-identification based on deep learning — An overview
    Wei, Wenyu
    Yang, Wenzhong
    Zuo, Enguang
    Qian, Yunyun
    Wang, Lihua
    Journal of Visual Communication and Image Representation, 2022, 82
  • [7] Deep Learning Based Occluded Person Re-Identification: A Survey
    Peng, Yunjie
    Wu, Jinlin
    Xu, Boqiang
    Cao, Chunshui
    Liu, Xu
    Sun, Zhenan
    He, Zhiqiang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (03)
  • [8] Deep Metric Learning for Person Re-Identification
    Yi, Dong
    Lei, Zhen
    Liao, Shengcai
    Li, Stan Z.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 34 - 39
  • [9] Deep Transfer Learning for Person Re-identification
    Chen, Haoran
    Shi, Yemin
    Yan, Ke
    Wang, Yaowei
    Xiang, Tao
    Geng, Mengyue
    Tian, Yonghong
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2018,
  • [10] REVIEW ON DEEP LEARNING BASED TECHNIQUES FOR PERSON RE-IDENTIFICATION
    Parkhi, Abhinav
    Khobragade, Atish
    3C TIC, 2022, 11 (02): : 208 - 223