Evolutionary algorithms and decision trees for predicting poor outcome after endovascular treatment for acute ischemic stroke

被引:10
|
作者
Kappelhof, N. [1 ]
Ramos, L. A. [1 ,2 ]
Kappelhof, M. [3 ]
van Os, H. J. A. [4 ]
Chalos, V [5 ,6 ,7 ]
van Kranendonk, K. R. [3 ]
Kruyt, N. D. [4 ]
Roos, Y. B. W. E. M. [8 ]
van Zwam, W. H. [9 ]
van der Schaaf, I. C. [10 ]
van Walderveen, M. A. A. [11 ]
Wermer, M. J. H. [4 ]
van Oostenbrugge, R. J. [12 ]
Lingsma, Hester [6 ]
Dippel, Diederik [5 ]
Majoie, C. B. L. M. [3 ]
Marquering, H. A. [1 ,3 ]
机构
[1] Univ Amsterdam, Dept Biomed Engn & Phys, Amsterdam UMC, Amsterdam, Netherlands
[2] Univ Amsterdam, Dept Clin Epidemiol & Biostat, Amsterdam UMC, Amsterdam, Netherlands
[3] Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
[4] Leiden Univ, Med Ctr, Dept Neurol, Leiden, Netherlands
[5] Erasmus MC Univ Med Ctr, Dept Neurol, Rotterdam, Netherlands
[6] Erasmus MC Univ Med Ctr, Dept Publ Hlth, Rotterdam, Netherlands
[7] Erasmus MC Univ Med Ctr, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[8] Univ Amsterdam, Dept Neurol, Amsterdam UMC, Amsterdam, Netherlands
[9] Maastricht Univ, Med Ctr, Cardiovasc Res Inst Maastricht, Dept Radiol, Maastricht, Netherlands
[10] Univ Med Ctr, Dept Radiol, Utrecht, Netherlands
[11] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[12] Maastricht Univ, Med Ctr, Dept Neurol, Maastricht, Netherlands
关键词
Acute ischemic stroke; Machine learning; Prognostics; Decision trees; Evolutionary algorithms; Fuzzy; Endovascular treatment;
D O I
10.1016/j.compbiomed.2021.104414
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the large overall beneficial effects of endovascular treatment in patients with acute ischemic stroke, severe disability or death still occurs in almost one-third of patients. These patients, who might not benefit from treatment, have been previously identified with traditional logistic regression models, which may oversimplify relations between characteristics and outcome, or machine learning techniques, which may be difficult to interpret. We developed and evaluated a novel evolutionary algorithm for fuzzy decision trees to accurately identify patients with poor outcome after endovascular treatment, which was defined as having a modified Rankin Scale score (mRS) higher or equal to 5. The created decision trees have the benefit of being comprehensible, easily interpretable models, making its predictions easy to explain to patients and practitioners. Insights in the reason for the predicted outcome can encourage acceptance and adaptation in practice and help manage expectations after treatment. We compared our proposed method to CART, the benchmark decision tree algorithm, on classification accuracy and interpretability. The fuzzy decision tree significantly outperformed CART: using 5-fold cross-validation with on average 1090 patients in the training set and 273 patients in the test set, the fuzzy decision tree misclassified on average 77 (standard deviation of 7) patients compared to 83 (+/- 7) using CART. The mean number of nodes (decision and leaf nodes) in the fuzzy decision tree was 11 (+/- 2) compared to 26 (+/- 1) for CART decision trees. With an average accuracy of 72% and much fewer nodes than CART, the developed evolutionary algorithm for fuzzy decision trees might be used to gain insights into the predictive value of patient characteristics and can contribute to the development of more accurate medical outcome prediction methods with improved clarity for practitioners and patients.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Predicting Poor Outcome Before Endovascular Treatment in Patients With Acute Ischemic Stroke
    Ramos, Lucas A.
    Kappelhof, Manon
    van Os, Hendrikus J. A.
    Chalos, Vicky
    Van Kranendonk, Katinka
    Kruyt, Nyika D.
    Roos, Yvo B. W. E. M.
    van der Lugt, Aad
    van Zwam, Wim H.
    van der Schaaf, Irene C.
    Zwinderman, Aeilko H.
    Strijkers, Gustav J.
    van Walderveen, Marianne A. A.
    Wermer, Mariekke J. H.
    Olabarriaga, Silvia D.
    Majoie, Charles B. L. M.
    Marquering, Henk A.
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [2] Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms
    van Os, Hendrikus J. A.
    Ramos, Lucas A.
    Hilbert, Adam
    van Leeuwen, Matthijs
    van Walderveen, Marianne A. A.
    Kruyt, Nyika D.
    Dippel, Diederik W. J.
    Steyerberg, Ewout W.
    van der Schaaf, Irene C.
    Lingsma, Hester F.
    Schonewille, Wouter J.
    Majoie, Charles B. L. M.
    Olabarriaga, Silvia D.
    Zwinderman, Koos H.
    Venema, Esmee
    Marquering, Henk A.
    Wermer, Marieke J. H.
    FRONTIERS IN NEUROLOGY, 2018, 9
  • [3] Identifying patients at high risk for poor outcome after endovascular treatment for acute ischemic stroke
    Tinkova, M.
    Tomek, A.
    Vasina, L.
    Parobkova, H.
    INTERNATIONAL JOURNAL OF STROKE, 2015, 10 : 158 - 158
  • [4] Predicting functional outcome in acute ischemic stroke patients after endovascular treatment by machine learning
    Liu, Zhenxing
    Zhang, Renwei
    Ouyang, Keni
    Hou, Botong
    Cai, Qi
    Xie, Yu
    Liu, Yumin
    TRANSLATIONAL NEUROSCIENCE, 2023, 14 (01)
  • [5] Angiographic Microcirculatory Obstructions Distal to Occlusion Signify Poor Outcome after Endovascular Treatment for Acute Ischemic Stroke
    Arsava, Ethem Murat
    Arat, Anil
    Topcuoglu, Mehmet Akif
    Peker, Ahmet
    Yemisci, Muge
    Dalkara, Turgay
    TRANSLATIONAL STROKE RESEARCH, 2018, 9 (01) : 44 - 50
  • [6] Angiographic Microcirculatory Obstructions Distal to Occlusion Signify Poor Outcome after Endovascular Treatment for Acute Ischemic Stroke
    Ethem Murat Arsava
    Anil Arat
    Mehmet Akif Topcuoglu
    Ahmet Peker
    Muge Yemisci
    Turgay Dalkara
    Translational Stroke Research, 2018, 9 : 44 - 50
  • [7] High Admission Glucose Is Associated With Poor Outcome After Endovascular Treatment for Ischemic Stroke
    Rinkel, Leon A.
    Nguyen, T. Truc My
    Guglielmi, Valeria
    Groot, Adrien E.
    Posthuma, Laura
    Roos, Yvo B. W. E. M.
    Majoie, Charles B. L. M.
    Lycklama a Nijeholt, Geert J.
    Emmer, Bart J.
    van der Worp, H. Bart
    Wermer, Marieke J. H.
    Kruyt, Nyika D.
    Coutinho, Jonathan M.
    STROKE, 2020, 51 (11) : 3215 - 3223
  • [8] Two-Year Outcome after Endovascular Treatment for Acute Ischemic Stroke
    van den Berg, Lucie A.
    Dijkgraaf, Marcel G. W.
    Berkhemer, Olvert A.
    Fransen, Puck S. S.
    Beumer, Debbie
    Lingsma, Hester F.
    Majoie, Charles B. L. M.
    Dippel, Diederik W. J.
    van der Lugt, Aad
    van Oostenbrugge, Robert J.
    van Zwam, Wim H.
    Roos, Yvo B. W. E. M.
    NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (14): : 1341 - 1349
  • [9] Metabolic Syndrome Predicts Poor Outcome in Acute Ischemic Stroke Patients After Endovascular Thrombectomy
    Chen, Zhonglun
    Su, Mouxiao
    Li, Zhaokun
    Du, Hongcai
    Zhang, Shanshan
    Pu, Mingjun
    Zhang, Yun
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2020, 16 : 2045 - 2052
  • [10] Quantitative EEG provides early prediction of poor outcome in acute ischemic stroke after endovascular treatment: a preliminary study
    Wang, Yunfeng
    Liu, Dacheng
    Liu, Jingyi
    Kong, Chaohong
    Zhang, Zhe
    Duan, Wanying
    Dornbos, David, III
    Liu, Liping
    NEUROLOGICAL RESEARCH, 2021, 43 (10) : 832 - 838