Research Agenda for Basic Explainable AI

被引:0
|
作者
Lukyanenko, Roman [1 ]
Castellanos, Arturo [2 ]
Samuel, Binny M. [3 ]
Tremblay, Monica [4 ]
Maass, Wolfgang [5 ]
机构
[1] HEC Montreal, Montreal, PQ, Canada
[2] CUNY, Baruch Coll, New York, NY 10021 USA
[3] Univ Cincinnati, Cincinnati, OH 45221 USA
[4] Coll William & Mary, Williamsburg, VA 23187 USA
[5] Saarland Univ, German Res Ctr Artificial Intelligence DFKI, Saarbrucken, Germany
关键词
Explainable AI; machine learning; basic level categories; Basic XAI; model interpretability; QUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence is increasingly driven by powerful but often opaque machine learning algorithms. These black-box algorithms achieve high performance but are not explainable to humans in a systematic and interpretable manner, a challenge known as Explainable AI (XAI). Informed by a synthesis of two converging literature streams on information systems development and psychology, we propose a new XAI approach termed Basic Explainable AI and a subsequent research agenda. We propose four research directions that focus on providing explanations by proactively considering the target audience's mental models and making the explanations maximally accessible to heterogeneous nonexpert users.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Explainable Generative AI (GenXAI): a survey, conceptualization, and research agenda
    Schneider, Johannes
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (11)
  • [2] Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda
    De Bock, Koen W.
    Coussement, Kristof
    De Caigny, Arno
    Slowinski, Roman
    Baesens, Bart
    Boute, Robert N.
    Choi, Tsan-Ming
    Delen, Dursun
    Kraus, Mathias
    Lessmann, Stefan
    Maldonado, Sebastian
    Martens, David
    Oskarsdottir, Maria
    Vairetti, Carla
    Verbeke, Wouter
    Weber, Richard
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 317 (02) : 249 - 272
  • [3] What Information is Required for Explainable AI? : A Provenance-based Research Agenda and Future Challenges
    Jaigirdar, Fariha Tasmin
    Rudolph, Carsten
    Oliver, Gillian
    Watts, David
    Bain, Chris
    2020 IEEE 6TH INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC 2020), 2020, : 177 - 183
  • [4] Natural Language Processing and Explainable AI for Basic Cancer Research and Cancer Genomic Medicine
    Miyano, Satoru
    CANCER SCIENCE, 2021, 112 : 950 - 950
  • [5] The Role of Explainable AI in the Research Field of AI Ethics
    Vainio-Pekka, Heidi
    Agbese, Mamia Ori-Otse
    Jantunen, Marianna
    Vakkuri, Ville
    Mikkonen, Tommi
    Rousi, Rebekah
    Abrahamsson, Pekka
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2023, 13 (04)
  • [6] A research agenda for basic income
    Kaufmann, Gudrun
    INTERNATIONAL SOCIAL SECURITY REVIEW, 2024, 77 (1-2) : 139 - 143
  • [7] A historical perspective of biomedical explainable AI research
    Malinverno, Luca
    Barros, Vesna
    Ghisoni, Francesco
    Visona, Giovanni
    Kern, Roman
    Nickel, Philip J.
    Ventura, Barbara Elvira
    Simic, Ilija
    Stryeck, Sarah
    Manni, Francesca
    Ferri, Cesar
    Jean-Quartier, Claire
    Genga, Laura
    Schweikert, Gabriele
    Lovri, Mario
    Rosen-Zvi, Michal
    PATTERNS, 2023, 4 (09):
  • [8] Forecasting AI progress: A research agenda
    Gruetzemacher, Ross
    Dorner, Florian E.
    Bernaola-Alvarez, Niko
    Giattino, Charlie
    Manheim, David
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2021, 170
  • [9] Expl(AI)n It to Me – Explainable AI and Information Systems Research
    Kevin Bauer
    Oliver Hinz
    Wil van der Aalst
    Christof Weinhardt
    Business & Information Systems Engineering, 2021, 63 : 79 - 82
  • [10] Expl(AI)n It to Me - Explainable AI and Information Systems Research
    Bauer, Kevin
    Hinz, Oliver
    van der Aalst, Wil
    Weinhardt, Christof
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2021, 63 (02) : 79 - 82