Graphical models for brain connectivity from functional imaging data

被引:0
|
作者
Zheng, XB [1 ]
Rajapakse, JC [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
关键词
D O I
10.1109/IJCNN.2004.1379965
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel approach for analysis of brain connectivity shown in functional MRI (fMRI), using graphical models. Structural Equation Modeling (SEM) is currently used to model neural systems by using partial covariance values, which is only able to affirm or refute functional connectivity of a previously known anatomical model or select the best fit model from a set of a priori models. Our approach is exploratory in the sense that it does not require a priori model such as an anatomical model. The SEM uses covariances which describe only second order behavior of a network while conditional probabilities used in graphical models, in theory, describe the complete behavior of a network. It renders the interactions among brain regions with conditional densities and allows simulation of disconnectivity of neural systems.
引用
收藏
页码:531 / 536
页数:6
相关论文
共 50 条
  • [1] GRAPHICAL MODELS AND DYNAMIC LATENT FACTORS FOR MODELING FUNCTIONAL BRAIN CONNECTIVITY
    Chang, Andersen
    Yao, Tianyi
    Allen, Genevera I.
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 57 - 63
  • [2] Probabilistic Graphical Models for Effective Connectivity Extraction in the Brain Using fMRI Data
    Safari, Mohammad Ali
    Mohammadbeigi, Majid
    QUALITY OF LIFE THROUGH QUALITY OF INFORMATION, 2012, 180 : 133 - 137
  • [3] Directed functional connectivity using dynamic graphical models
    Schwab, Simon
    Harbord, Ruth
    Zerbi, Valerio
    Elliott, Lloyd
    Afyouni, Soroosh
    Smith, Jim Q.
    Woolrich, Mark W.
    Smith, Stephen M.
    Nichols, Thomas E.
    NEUROIMAGE, 2018, 175 : 340 - 353
  • [4] Functional and effective connectivity:: new data analysis strategies for functional brain imaging
    Schlösser, R
    Gesierich, T
    Kaufmann, B
    Vucurevic, G
    Stoeter, P
    NERVENHEILKUNDE, 2002, 21 (07) : 351 - 355
  • [5] Generating Nonlinear Models of Functional Connectivity from Functional Magnetic Resonance Imaging Data with Genetic Programming
    Hughes, James Alexander
    Daley, Mark
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3252 - 3261
  • [6] Imaging of Functional Connectivity in the Mouse Brain
    White, Brian R.
    Bauer, Adam Q.
    Snyder, Abraham Z.
    Schlaggar, Bradley L.
    Lee, Jin-Moo
    Culver, Joseph P.
    PLOS ONE, 2011, 6 (01):
  • [7] Brain Functional Connectivity Analysis via Graphical Deep Learning
    Qu, Gang
    Hu, Wenxing
    Xiao, Li
    Wang, Junqi
    Bai, Yuntong
    Patel, Beenish
    Zhang, Kun
    Wang, Yu-Ping
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (05) : 1696 - 1706
  • [8] Spectral mapping of brain functional connectivity from diffusion imaging
    Becker, Cassiano O.
    Pequito, Sergio
    Pappas, George J.
    Miller, Michael B.
    Grafton, Scott T.
    Bassett, Danielle S.
    Preciado, Victor M.
    SCIENTIFIC REPORTS, 2018, 8
  • [9] Spectral mapping of brain functional connectivity from diffusion imaging
    Cassiano O. Becker
    Sérgio Pequito
    George J. Pappas
    Michael B. Miller
    Scott T. Grafton
    Danielle S. Bassett
    Victor M. Preciado
    Scientific Reports, 8
  • [10] Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity
    Belilovsky, Eugene
    Varoquaux, Gael
    Blaschko, Matthew
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29