UNCERTAINTY-WIZARD: Fast and User-Friendly Neural Network Uncertainty Quantification

被引:11
|
作者
Weiss, Michael [1 ]
Tonella, Paolo [1 ]
机构
[1] Univ Svizzera Italiana, Lugano, Switzerland
来源
2021 14TH IEEE CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION (ICST 2021) | 2021年
基金
欧盟地平线“2020”;
关键词
fault tolerance; software reliability; software testing; art neural networks; software tools;
D O I
10.1109/ICST49551.2021.00056
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Uncertainty and confidence have been shown to be useful metrics in a wide variety of techniques proposed for deep learning testing, including test data selection and system supervision. We present UNCERTAINTY-WIZARD, a tool that allows to quantify such uncertainty and confidence in artificial neural networks. It is built on top of the industry-leading TF.KERAS deep learning API and it provides a near-transparent and easy to understand interface. At the same time, it includes major performance optimizations that we benchmarked on two different machines and different configurations.
引用
收藏
页码:436 / 441
页数:6
相关论文
共 50 条
  • [1] Fast and user-friendly
    Wiederhold, Sabine
    CHEMIE INGENIEUR TECHNIK, 2025, 97 (03) : 135 - 135
  • [2] Diffuser: A user-friendly program for diffusion chronometry with robust uncertainty estimation
    Wu, Li-Guang
    Li, Yang
    Jollands, Michael C.
    Vermeesch, Pieter
    Li, Xian-Hua
    COMPUTERS & GEOSCIENCES, 2022, 163
  • [3] Monte Carlo bottom-up evaluation of global instrumental quantification uncertainty: Flexible and user-friendly computational tool
    Morgado, Vanessa
    Palma, Carla
    Bettencourt da Silva, Ricardo J. N.
    CHEMOSPHERE, 2020, 258
  • [4] Uncertainty Quantification Neural Network from Similarity and Sensitivity
    Kabir, H. M. Dipu
    Khosravi, Abbas
    Nahavandi, Darius
    Nahavandi, Saeid
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [5] Deep neural network uncertainty quantification for LArTPC reconstruction
    Koh, D.
    Mishra, A.
    Terao, K.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (12):
  • [6] Nonparametric Uncertainty Quantification for Single Deterministic Neural Network
    Kotelevskii, Nikita
    Artemenkov, Aleksandr
    Fedyanin, Kirill
    Noskov, Fedor
    Fishkov, Alexander
    Shelmanov, Artem
    Vazhentsev, Artem
    Petiushko, Aleksandr
    Panov, Maxim
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Uncertainty quantification for neural network potential foundation models
    Jenna A. Bilbrey
    Jesun S. Firoz
    Mal-Soon Lee
    Sutanay Choudhury
    npj Computational Materials, 11 (1)
  • [8] On Uncertainty Quantification for Convolutional Neural Network LiDAR Localization
    Joerger, Mathieu
    Wang, Julian
    Hassani, Ali
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1774 - 1779
  • [9] Fast and user-friendly quantum key distribution
    Ribordy, Grégoire
    Gautier, Jean-Daniel
    Gisin, Nicolas
    Guinnard, Olivier
    Zbinden, Hugo
    Journal of Modern Optics, 2000, 47 (2-3 SPEC.) : 517 - 531
  • [10] Fast and user-friendly quantum key distribution
    Ribordy, G
    Gautier, JD
    Gisin, N
    Guinnard, O
    Zbinden, H
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 517 - 531