Competing phases, phase separation, and coexistence in the extended one-dimensional bosonic Hubbard model

被引:23
|
作者
Batrouni, G. G. [1 ,2 ,3 ]
Rousseau, V. G. [4 ]
Scalettar, R. T. [5 ]
Gremaud, B. [3 ,6 ,7 ,8 ]
机构
[1] Univ Nice Sophia Antipolis, INLN, CNRS, F-06560 Valbonne, France
[2] Inst Univ France, F-75005 Paris, France
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[4] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[5] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[6] UPMC, Ecole Normale Super, CNRS, Lab Kastler Brossel, F-75005 Paris, France
[7] CNRS UNS NUS NTU, Int Joint Res Unit, Merlion MajuLab, UMI 3654, Singapore, Singapore
[8] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 20期
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
PATH-INTEGRAL COMPUTATION; NEAR-NEIGHBOR REPULSION; UNIVERSAL CONDUCTIVITY; INSULATOR TRANSITION; LOCALIZATION; SUPERFLUID; SUPERSOLIDS; SYSTEMS; ATOMS; STATE;
D O I
10.1103/PhysRevB.90.205123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the phase diagram of the one-dimensional bosonic Hubbard model with contact (U) and near neighbor (V) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime (U, V, and mu) where this phase exists and how it competes with other phases, such as the supersolid (SS) phase, is incompletely understood. We use the stochastic Green function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. Our main conclusions are that the HI exists only at rho = 1, the SS phase exists for a very wide range of parameters (including commensurate fillings), and displays power law decay in the one-body Green function. In addition, we show that at fixed integer density, the system exhibits phase separation in the (U, V) plane.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Competing Supersolid and Haldane Insulator Phases in the Extended One-Dimensional Bosonic Hubbard Model
    Batrouni, G. G.
    Scalettar, R. T.
    Rousseau, V. G.
    Gremaud, B.
    PHYSICAL REVIEW LETTERS, 2013, 110 (26)
  • [2] Supersolid phases in the one-dimensional extended soft-core bosonic Hubbard model
    Batrouni, G. G.
    Herbert, F.
    Scalettar, R. T.
    PHYSICAL REVIEW LETTERS, 2006, 97 (08)
  • [3] Possible exotic phases in the one-dimensional extended Hubbard model
    Clay, RT
    Sandvik, AW
    Campbell, DK
    PHYSICAL REVIEW B, 1999, 59 (07): : 4665 - 4679
  • [4] Phase diagram of the one-dimensional extended ionic Hubbard model
    Zhao Hong-Xia
    Zhao Hui
    Chen Yu-Guang
    Yan Yong-Hong
    ACTA PHYSICA SINICA, 2015, 64 (10)
  • [6] Supersolid phases in the bosonic extended Hubbard model
    Ng, Kwai-Kong
    Chen, Yung-Chung
    PHYSICAL REVIEW B, 2008, 77 (05)
  • [7] Supersolid and solitonic phases in the one-dimensional extended Bose-Hubbard model
    Mishra, Tapan
    Pai, Ramesh V.
    Ramanan, S.
    Luthra, Meetu Sethi
    Das, B. P.
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [8] Competition between the Haldane insulator, superfluid and supersolid phases in the one-dimensional Bosonic Hubbard Model
    Batrouni, G. G.
    Rousseau, V. G.
    Scalettar, R. T.
    Gremaud, B.
    XXVI IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2014), 2015, 640
  • [9] Phase diagram of the one-dimensional extended Hubbard model at half filling
    Tsuchiizu, M
    Furusaki, A
    PHYSICAL REVIEW LETTERS, 2002, 88 (05) : 4
  • [10] Phase diagram of the one-dimensional extended Hubbard model with hopping dimerization
    Ejima, Satoshi
    Gebhard, Florian
    Nishirnoto, Satoshi
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 460 : 1079 - 1080